Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  bacterial endotoxin
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Samples of settled dust were collected in 14 animal houses and examined for the presence of bacterial endotoxin with the Limulus (LAL) test and the gas chromatography - tandem mass spectrometry (GC-MSMS) technique, based on the detection of 3- hydroxy fatty acids (3-OH-FAs) as chemical markers of the endotoxin lipopolysaccharide. The median concentrations of the endotoxin in dust determined with LAL test in sheep sheds, poultry houses, and horse stables were 15,687.5 µg/g, 8,081.8 µg/g, and 79.3 µg/g, respectively, while those determined with the GC-MSMS technique were 868.0 µg/g, 580.0 µg/g, and 496.0 µg/g, respectively. Statistical comparison of the results yielded with LAL test and GC-MSMS technique revealed a weak correlation between both methods. Fatty acids with 14-16 carbon chains (3-OH-C₁₄ and 3-OH-C₁₆) were predominant in the settled dust of the facilities under study. In conclusion, endotoxin in the concentrations detected in this study may present a respiratory hazard to both livestock animals and farm workers. Thus, the prevention measures aiming to lower the exposure to endotoxin in livestock facilities are highly desirable.
NOS-2-derived NO is involved in hypotension, vasoplegia, metabolic disorders and lung injury in endotoxic shock. On the other hand, NOS-3-derived NO protects against LPS-induced lung injury. We have previously shown that NO limits lung injury in the isolated blood-perfused rat lung. Here we characterize the ultrastructure of microvascular lung injury induced by LPS in the absence of endogenous NO and summarize our data on the mechanisms of immediate lung response to LPS in the presence and absence of endogenous NO. Injection of LPS (from E.Coli, 300 µg/ml) into the isolated blood-perfused rat lung induced an immediate transient constriction of airways and vessels that was not associated with lung edema and pulmonary microcirculation injury. In contrast, in the presence of the NOS inhibitor L-NAME (300 µg/ml), LPS produced an enhanced constriction of airways and vessels, which was accompanied by profound lung edema and capillary-alveolar barrier injury, as evidenced by optic and electron microscopy. Microvascular lung injury was confirmed by the following findings: edema of pulmonary endothelium with low electronic density of endothelial cytoplasm, presence of protein-rich fluid and numerous erythrocytes in alveolar space, concentric figures of damaged tubular myelin of surfactant (myelin-like bodies), edema of epithelium type I cells with low electronic density of their cytoplasm and alterations in ultrastructure of basal membrane of vascular-alveolar barrier. Interestingly, epithelial type II cells did not show signs of injury. It is worth noting that capillary-alveolar barrier injury induced by L-NAME+LPS was associated with sequestration of platelets and neutrophils in pulmonary microcirculation and internalization of LPS by neutrophils. In conclusion, in the absence of endogenous nitric oxide LPS induces injury of microvascular endothelium and vascular-alveolar barrier that leads to fatal pulmonary edema. Mechanisms of immediate lung response to LPS in presence of NO and those leading to acute microvascular lung injury in response to LPS in absence of NO are summarized. In our view, immediate lung response to bacterial endotoxin represents a phylogenetically ancient host defence response involving complement-dependent activation of platelets and neutrophils and subsequent production of lipid mediators. This response is designed for a quick elimination of bacterial endotoxin from the circulation and is safeguarded by endothelial NO.
The presence of various amounts of bacterial endotoxin was detected by LAL-test in human immunoglobulins, human albumins, virus vaccines, bacterial toxoids and antibiotics.
Lipopolysaccharide (LPS, endotoxin) is the component of the cellular wall of Gram negative bacteria. Endotoxemia (sepsis) could produce multiorgan failure and in the early period of life LPS are responsible for the changes of metabolism and for the reduction of protein synthesis. The influence of neonatal endotoxemia on the pancreas at adults has not been investigated yet. The aim of this study was to assess the pancreatic exocrine function in the adult rats which have been subjected, in the neonatal period of life, to chronic LPS pretreatment. LPS from E. coli or S. typhi at doses of 5, 10 or 15 mg/kg-day was administered intraperitoneally (i.p.) to the suckling rats (30 g) during 5 consecutive days. Three months later these animals (300 g) were equipped with pancreato-biliary fistulae for the in vivo secretory study. Amylase release from isolated pancreatic acini obtained from these rats was also assessed. Pancreatic tissue samples were taken for histological assessment and for the determination of gene expression for CCK1 receptor by RT-PCR. Pancreatic amylase secretions stimulated by caerulein or by diversion of pancreatic-biliary juice to the exterior (DBPJ) was significantly, and dose-dependently reduced in the adult rats which have been subjected in infancy to chronic pretreatment with LPS from E. coli or S. typhi, as compared to the untreated control. In these animals basal secretion was unaffected. In the rats pretreated with LPS in the suckling period of life caerulein-induced amylase release from isolated pancreatic acini was significantly decreased, as compared to the untreated with LPS control. This was accompanied by dose-dependent reduction of mRNA signal for CCK1 receptor on pancreatic acini. Neonatal endotoxemia failed to affect significantly pancreatic morphology as well as plasma amylase level in the adult rats. We conclude that neonatal endotoxemia reduces gene expression for CCK1 receptor and could produce impairment of the exocrine pancreatic function at adult age.
The aim of the study was to determine bacterial endotoxin concentration in the water flowing from a high-speed handpiece of a dental unit and in the air contained in the bioaerosol formed during dental conservative treatment. The air was collected in the space between the patient and dentist. The study was conducted on 25 operative sites (units) and had two stages: before application of a dental unit waterline (DUWL) disinfectant and after a 2-week application of disinfection procedure. The research showed that the mean concentration of bacterial endotoxin in the water flowing from high-speed handpieces was significantly reduced after the use of a disinfectant. The mean concentration of bacterial endotoxin in the air was similar at both stages - before and after application of waterline decontamination procedure. The study showed that in dental air-water aerosol, water is the main source of bacterial endotoxin contaminating the aerosol during the work with dental handpieces. Application of a user-friendly water disinfectant to significantly decrease endotoxin concentration in the DUWL water and in the aerosol, is one of recommended methods to reduce health risk.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.