Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  atmospheric nitrogen
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Changes in precipitation patterns and the deposition of atmospheric nitrogen (N) increase the possibility of altering soil carbon (C):N:phosphorus (P) stoichiometry through their effects on soil C and nutrient dynamics, especially in water- and N-limited ecosystems. We conducted separate 2-year watering and N addition experiments, and examined soil C:N:P stoichiometry, relative growth rate, and leaf N resorption traits of Glycyrrhiza uralensis Fisch in a desert steppe of northwestern China. Our objectives were to determine how soil C:N:P stoichiometry responded to climate change, and its indications for plant growth and N resorption. The results showed that additional water increased N loss and thus decreased N availability, resulting in high N resorption from senescing leaves of G. uralensis. N addition increased N availability, consequently reducing plant N dependence on leaf resorption. High relative growth rates occurred with intermediate N:P and C:N ratios, while high N resorption occurred with a low N:P ratio but a high C:N ratio. Our results indicate that soil C:N:P stoichiometry also could be a good indicator of N limitation for desert steppe species. Altered soil C:N:P stoichiometry affects the N strategy of plants, and will be expected to further influence the structure and function of the desert steppe community in the near future.
The process of the host-plant recognition by rhizobia is complex and multi- step. The interaction between legumes and microorganisms results in the induction of the root nodule. This symbiotic interaction is highly host-specific. Bacteria within nodules fix atmospheric nitrogen. This process is of immense ecological and economic significance. The subject of this presentation is the molecular mechanism by which the bacterium determines its host-specific characteristics. First flavonoids secreted by the plant roots induce the tran­scription of bacterial genes involved in nodulation, the so-called nod genes. This leads to the next step of the signalling system, i.e. the production and secretion of lipo-oligosaccharide molecules by rhizobia. These signal molecules have various discernible effects on the roots of the host leguminous plants. The bacterial nodulation factors were isolated and structurally identified as substi­tuted and N-acylated chitin oligosaccharides. These prokaryotic signals play a key role in the symbiosis by controlling the host specificity of the bacteria. They constitute a new class of signalling molecules able to elicit nodule organogene­sis in leguminous plants in the absence of bacteria. More recent studies impli­cate involvement of root cell membrane depolarization and ion selective chan­nels in the communication processes that initiate nodule formation.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.