Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  annual growth
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Nitrogen is an essential nutrient for plant growth. Although much has been learned about its utilization and distribution within the plant body, little is known about the relationship between nitrogen content and standing biomass at the level of entire forests. Data for nitrogen content (N) and biomass (M) of 10 deciduous species in USA at the individual trees level and 37 species grown in three forest biomes (i.e. tropic, subtropics, and temperate) in China at stands level were gathered to determine the N versus M scaling relationships for different tissue- and organ-types (e.g. bark and leaves). Model Type II regression protocols were used to calculate scaling exponents and allometric constants (i.e. slopes and y-intercepts of log-log bivariate plots, respectively) between N and M to. At the level of individual plants, N scaled nearly isometrically with M for the different tissue- and organ-types (i.e. Nα M 0.97–1.04). At the stand-level, N scaled similarly with respect to leaf, branch, and bark M, despite differences in stand size-frequency distributions and species composition. However, total stand N scaled allometrically with respect to total stem or root M and thus to total stand mass (i.e. N α MT 0.77–0.87). This was attributed to the accumulation of wood (and other ‘necromass’ tissue components that have lower N content than physiologically active tissues) in progressively older (and thus more massive) tree stands. When coupled to the scaling of N with respect to annual plant growth rates, these exponents provide important boundary conditions with which to model forest nutrient cycling.
Recent years have been marked with a more common use of mineral fertilizers comprising marine algal extracts in horticultural production. Seaweed extracts are reported to possess, among others, biostimmulatory potential that improves yield growth and its quality as well as promotes plant resistance to adverse environmental agents. The marine alga processing technologies facilitate the extraction of active substances valuable for plant crops as stimulants for a number of plant physiological processes. The substances can be incorporated into both, soil or foliar applied fertilizers. The present research objective was to assess the influence of N Pro technology and Seactiv complex based on marine algal extracts on apple tree ‘Szampion’ growth, yield quantity and quality. The experimental material comprised ‘Szampion’ apple trees grafted on M.26 stock, the trees were aged 10 years at the experiment onset. The study aimed at evaluation of growth, yield quantity and quality of ‘Szampion’ apple trees fertilized according to two following programs. The measurements performed showed that introduction of the fertilization programs based on marine algal extracts had significant effect on total yield, one fruit weight, firmness and sugar extract content in apple tree ‘Szampion’ fruits. It was found that the N Pro technology and Seactiv complex had significantly beneficial influence on the percentage of big fruits, i.e. above 7.5 cm diameter and marketable yield in each experimental year. Cropping efficiency coefficient (CEC) of ‘Szampion’ apple trees fertilized according to N Pro technology and Seactiv base was significantly higher compared to control solely in 2008, in the other research years the differences were insignificant. The fertilization program based on marine algal extracts had positive influence on the ‘Szampion’ apple tree`s annual increments and each year the trees under N Pro and Seactive complex fertilization technology produced higher increments as against control; the differences in the last research year were significant. The N Pro technology and Seactiv base had positive impact on ‘Szampion’ apple tree leaf surface area, significant influence was observed in the second and third research year.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.