Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  allelochemical
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
2
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Allelopathy in Solanaceae plants

72%
Solanaceae plants have strong allelopathic potential, and therefore the action is confirmed through: a) bioassays with liquid or various solvent extracts and residues, b) fractionation, identification, and quantification of causative allelochemicals. Most assessments of allelopathy involve bioassays of plant or soil extracts, leachates, fractions, and residues which support seed germination and seedling growth in laboratory and greenhouse experiments. Plant growth is also stimulated below the allelopathic threshold, however severe growth reductions may be observed above the threshold concentration depending on the sensitivity of the receiving species. Generally, seedling growth is more sensitive than germination, particularly root growth. Some approaches showed that field soil collected beneath donor plants significantly reduced or somewhat promoted the growth of the recipients plants. Petri dish bioassays with aqueous extracts of different parts of donor plants showed considerable phytotoxic activities in a concentration-dependent manner with leaf aqueous extracts being most dominant. Delayed seed germination and slow root growth attributable to the extracts may be baffled with diffusion effects on the rate of imbibition, delayed initiation of germination, and particularly cell elongation; the main factor that is responsible for affecting root growth before and after the tip penetrates the testa. Light and electron microscopy extract analysis at the ultrastructural level are correctly investigated. Several Solanaceae plants have allelopathic potential, and therefore the activities, kinds and quantity of allelopathic compounds differ depending on the plant species. The incorporation of allelopathic substances into agricultural management might scale back the development of pesticides and reduce environmental deterioration.
3
72%
Purpose: Weed interference is a constraint in agricultural practice. The crop-weed interaction has been extensively described in literature, but the weed-weed interaction and their potential usage in crop production have not much been understood. In this paper, the interactions of allelochemicals of the weeds which cause troublesome in crop production and ecosystem against weeds, crops, and pathogens are described. Principal results: Weed allelochemicals are classified into many chemical classes, and the majority is consisting of phenolics acids, alkaloids, terpenes, flavonoids, long chain fatty acids, lactones, and other volatile compounds. Type of weed allelochemicals and their doses are varied among weed species. Some allelochemicals such as catechin (+/-) have been reported to be responsible for weed invasiveness. Some crops exude germination stimulants to parasitic weeds such as Striga spp. and Orobanche spp. In contrast to their negative impacts on crop production, many weeds can be exploited as promising sources to control harmful insects, fungi, bacteria, and weeds. For instance, Ageratum conyzoides is a destructive weed in crop production, but it exerted excellent insecticidal, antifungal, and herbicidal capacity and promoted citrus productivity in A. conyzoides intercropped citrus orchards. Major conclusions: In general, weeds compete with crops by chemical pathway by releasing plant growth inhibitors to reduce crop growth. Weed allelochemicals may be successfully exploited for pest and weed controls in an integrated sustainable crop production. Some weed allelochemicals are potent for development of natural pesticides.
The paper presents the results of a study on allelopathic effect of extracts from Stratiotes aloides on natural lake phytoplankton communities grown outdoor in 40 l containers under natural light conditions. The water and plants were taken from an oxbow lake in spring (when S. aloides plants were submerged) and in summer (when plants were floating on lake water surface). Water extracts were prepared from fresh healthy leaves obtained on both sampling occasions. Control containers were supplemented with N and P in amounts similar to those introduced to experimental containers with macrophyte extracts. That way the experimental set up excluded the possibility of phytoplankton limitation by nutrients. Under such conditions the extracts from S. aloides strongly reduced phytoplankton biomass measured as the concentration of chlorophyll a (from 370 to 141 mg chl. a m⁻³ in spring and from 266 to 50 mg chl. a m⁻³ in summer). The inhibition of phytoplankton growth was indirectly confirmed by higher concentrations of available nutrients in experimental versus control containers. The extracts affected also the spring phytoplankton community structure by selective inhibition of diatoms and, to a less extent, of green algae and Cryptophyceae. Similar response of phytoplankton biomass to extracts obtained from submerged and floating S. aloides might suggest that allelochemicals were the constitutive part of macrophyte tissue and their production was not induced by competition between macrophyte and algae.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.