Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  agricultural watershed
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A procedure for predicting the sediment graph (i.e. the suspended sediment flux), from a small river catchment by heavy rainfall, has been developed using the concept of an instantaneous unit hydrograph (IUH) and dimensionless sediment concentration distribution (DSCD). A formula for instantaneous unit sedimentgraph (IUSG) is presented, and a procedure for estimating the sediment routing coefficient, which is a key parameter of the IUSG, based on measured data of rainfall-runoff-suspended sediment is applied. Field data from a small, fi eld sized agricultural basin, lacated in center of Illinois has been used for analizing lag times for runoff (LAG) and sediment yield (LAGs). Assumptions about sediment generated during rainfall events are discussed.
The lagg of ombrotrophic peatland studied is the ecotone connecting two contrasting in respect of trophic conditions ecosystems: acidic bog and fertilized arable fields. Differences of element content in the waters of these habitats concerns the concentration of Ca, Mg, Na, Cl and pH value. The periodical inflow of waters from agriculture catchment alkalize this zone and, as a result, threaten the ecological system of bog, what is realized by increasing lagg area at the cost of bog area and by decay of ombrotrophic flora components.
The participation of stakeholders is an important component in integrated and adaptive watershed planning and management. In Quebec, Canada watershed organizations are in the process of implementing participatory based watershed planning and management schemes. However, there is a lack of simple and readily implementable frameworks and methods to explicitly involve stakeholders, as well as integrate physical and social processes, in watershed planning and management in Quebec. This paper describes the application of the first three stages of a newly proposed five stage stepwise Participatory Model Building framework that was developed to help facilitate the participatory investigation of problems in watershed planning and management through the use of qualitative system dynamics models. In the agriculturally intensive Du Chene watershed in Québec, eight individual stakeholder interviews were conducted in cooperation with the local watershed organization to develop qualitative system dynamics models that represent the main physical and social processes in the Du Chene watershed. The proposed Participatory Model Building framework was found to be accessible for all the interviewees, and was deemed to be very useful by the watershed organization to develop an overview of the different perspectives of the main stakeholders in the watershed, as well as to help develop watershed policies and strategies. The individual qualitative system dynamics models developed in this study can subsequently be converted into an overall group built system dynamics model (describing the socio-economic-political components of the watershed), which in turn can be quantified and coupled with a physically based model such as HEC-HMS or SWAT (describing the physical components of the watershed).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.