Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  acetamiprid
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The cotton aphid, Aphis gossypii is an economically significant insect pest infesting various important crops and vegetables. The neonicotinoid, acetamiprid was recommended against aphids with excellent results. Resistance emergence and environmental pollution makes acetamiprid a favorable alternative to conventional insecticides. The aims of the present work were to predict acetamiprid resistance risk in A. gossypii, investigate cross resistance to other tested insecticides and explore acetamiprid stability in the absence of selection. A field-collected population from Sharqia governorate, Egypt was selected with acetamiprid. After 16 generations of selection, there was a 22.55-fold increase in LC50 and the realized heritability (h2) of resistance was 0.17. Projected rates of resistance indicated that, ifh2 = 0.17 and 50% of the population was killed at each generation, then a tenfold increase in LC50 would be expected in 12.2 generations. If h2 was 0.27 then 7.63 generations would be needed to achieve the same level. In contrast, with h2 of 0.07 it necessitates about 30 generations of selection to reach the same level. Cross resistance studies exhibited that the selected strain showed obvious cross resistance to the other tested neonicotinoid members, moderate cross resistance to alpha-cypermethrin and no cross resistance to pymetrozine. Fortunately, resistance to acetamiprid in the cotton aphid was unstable and resistance reverses the nearby susceptible strain throughout five generations without exposure to acetamiprid. Our results exhibited cotton aphid potential to develop resistance to acetamiprid under continuous selection pressure. The instability of acetamiprid makes A. gossypii amenable to resistance management tactics such as rotation with pymetrozine.
Little is known on the effects of nicotinoid pesticides on behavioural and physiological parameters of microcrustaceans. The aim of the study was to determine the effects of three concentrations (25, 50 and 100 mg l⁻¹) of neonicotinoid insecticide Mospilan 20 SP (containing 20% of the active ingredient acetamiprid) on swimming velocity and physiological parameters such as heart rate and thoracic limb activity in Daphnia magna. The results showed that acetamiprid induced concentration-dependent inhibition of swimming velocity and thoracic limb activity after 2 hours of the exposure. The insecticide depressed the heart rate at 100 mg l⁻¹ after 24 hours of the exposure, however stimulation was noted at 25 and 50 mg l⁻¹. The study suggests that neonicotinoids may alter on behavioural and physiological parameters in Daphnia magna thereby increasing susceptibility of these animals to higher predator pressure.
Aphids are one of the most important economic pests and vectors of viral diseases in crops. Brevicoryne brassicae L., one of the most serious aphid pests in Brassicaceae, if not controlled, often reaches very high densities. The present study compared the systemic effects of ethanolic, methanolic and aqueous Melia azedarach L., Peganum harmala L., Calendula officinalis L. and Otostegia persica Boissier extracts with two systemic pesticides, acetamiprid and pirimicarb (at the maximum label-recommended rate). Population growth percentages of B. brassicae through leaf spraying under greenhouse conditions were assessed. The chemicals were sprayed on one of the leaves in greenhouse condition. The results indicated that all the plant extracts have systemic effects at different levels. Among different extracts, O. persica ethanolic extract, P. harmala methanolic extract and M. azedarach aqueous extract resulted in a reduction of the B. brassicae population
Efforts have been made during the past three decades to develop insecticides with selective properties that act specifically on biochemical sites present in a particular insect group, but whose properties differ from those present in mammals. This approach has led to the discovery of compounds that affect the hormonal regulation of molting and developmental processes in insects such as ecdysone agonists, juvenile hormone (JH) mimics and chitin synthesis inhibitors. The search for potent acylureas has led to the development of novaluron (Rimon) developed by Makhteshim Chemical Works. The LC-50 value of novaluron on 3rd-instar Spodoptera littoralis fed on treated leaves is approximately 0.1 mg a.i./liter. This value resembles that of chlorfluazuron and is tenfold lower than that of teflubenzuron. Novaluron affects nymphs of Bemisia tabaci more than chlorfluazuron and teflubenzuron. Artificial rain, at a rate of 40 mm/h applied 5 and 24 h after treatment in a cotton field had no appreciable effect on the potency of novaluron on both S. littoralis larvae and B. tabaci nymphs. Hence, novaluron can be used in tropical areas and during rainy seasons. In general, benzoylphenyl ureas had no direct effect on parasitoids and phytoseiids and are considered mildly affect other natural enemies. Novaluron has no cross-resistance with conventional insecticides, the JH mimics pyriproxyfen and neonicotinoids. As such, it is considered an important compound in pest management programs.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.