Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  abdominal pain
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Chronic abdominal pain is the most distressing symptom in patients with functionnal digestive disorders (FDD). IBS is the most common gastrointestinal disorder seen in primary care and gastroenterology practice. IBS is a functional bowel disorder in which abdominal pain is associated with defaecation or a change in bowel habit, with features of disordered defecation and with distension. The underlying pathophysiology of IBS is unknown but a chronic visceral hyperalgesia, in the absence of detectable organic disease, is implicated. The exact location of abnormality of visceral pain processing is not known. Theories of its etiology have range widely from the original view that the disease represents a primary disturbance of gut mucosa to emerging conception of the syndrome as emanating from a complex disordered interaction between the digestive and nervous systems. Several lines of evidence suggest a strong modulatory or etiologic role of the central nervous system in the pathophysiology of IBS. A major advance in the understanding of the central mechanisms of pain processing has evolved from application of functional imaging techniques, as represented by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). In humans, multiple components are involved in somato-visceral pain processings, including sensory-discriminative components, affective components, and cognitive components. Silverman et al, using PET, were the first to explore neural correlates of abdominal pain induced by rectal distension. If healthy subjects activated the ACC, the IBS patients did not while they presented an activation of the left PFC. These findings were consistent with an IBS model that includes both the exaggerated activation of a vigilance network (dorsolateral PFC) and a failure in pain inhibition network anterior cingulate cortex (ACC). In contrast, Mertz et al., using fMRI, observed that pain led to a greater activation of the ACC than did non-painful stimuli thus arguing for an up-regulation of afferent sensitivity to pain. Using fMRI, we also characterized cerebral loci activated by a rectal distension in healthy volunteers. The activation patterns presented a strong similarity with the central processing of somatic pain. In contrast, in a women predominant population of IBS patients, we did not observed any neuronal activation in locations activated in healthy volunteers (ACC, dorsolateral PFC) while a significant deactivation was observed in the IC and in the amygdala, a limbic structure with a role to assign emotional significance to a current experience related to anxiety and fear. Brain imaging techniques thus appear as useful tools to characterize normal and abnormal brain processing of visceral pain in patients with FDD. Reversal effects of chemical compounds targeting these abnormalities either at a peripheral or a central level should be of interest.
6
Content available remote

Afferent signalling of gastric acid challenge

67%
Gastric acid is a factor in the pain associated with peptic ulcer and other acid-related disorders including functional dyspepsia, given that antisecretory treatment is a mainstay in the treatment of upper abdominal pain. However, the molecular sensors, afferent pathways and central processing systems of gastric chemonociception are little known. This article reviews emerging evidence that vagal afferent pathways play a pivotal role in gastric chemonociception. Exposure of the rat gastric mucosa to backdiffusing concentrations of luminal acid is signalled to the brainstem, but not spinal cord, as visualized by functional neuroanatomy based on the rapid expression of c-fos. This observation is complemented by the finding that the visceromotor response to gastric acid challenge is suppressed by vagotomy, but not splanchnectomy. The gastric acid-induced expression of c-fos in the brainstem is reduced by inhibition of gastric acid secretion and enhanced by pentagastrin-evoked stimulation of gastric acid secretion. These data indicate that endogenous acid modulates the sensory gain of acid-sensitive vagal afferents. Further consistent with a role of these neurons in gastric nociception is the finding that exposure to proinflammatory cytokines and the induction of experimental gastritis or gastric ulceration sensitizes vagal afferent pathways to gastric acid. Taken together, these observations are of relevance to the understanding and treatment of gastric hyperalgesia and dyspeptic pain.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.