Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Trypanorhyncha
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The genus Grillotia Guiart, 1927 is cosmopolitan in its distribution and the type-species, G. erinaceus (van Beneden, 1858), has been relatively well studied. However, this study provides infection indices of Grillotia erinaceus from southern and northern Black Sea whiting Merlangius merlangus for the first time. The specimens of Grillotia erinaceus were obtained from subserosa of the anterior oesophagus, stomach, pyloric caeca, liver, ovaries and mesenterium of whiting caught by commercial fishing vessels off Sinop, Turkey and off Balaklava, Ukraine. Fish were examined during the period from May 2011 to April 2012. Prevalence and mean intensity values in 268 fish collected off Sinop in the Black Sea were 18.66% and 1.82 ± 0.16 parasites per infected fish, respectively. In Ukrainian 166 whiting samples collected off Balaklava in the Black Sea, however, G. erinaceus plerocercus infection prevalence was 10.24% and mean intensity 1.71 ± 0.75 parasites per infected fish. Infection parameters were also determined at both sampling sites in relation with host length, sex and season.
The present study describes the ultrastructure of mature vitellocytes of the trypanorhynch cestode Progrillotia pastinacae Dollfus, 1946 (Progrillotiidae), a parasite of the common stingray Dasyatis pastinaca (Linnaeus, 1758) (Dasyatidae). The vitelline cells of this species measure about 24 μm in length and about 20 μm in width. They have small, elongated, slightly lobulated nuclei, about 4–5 μm in length, with large dense elongated nucleoli and numerous irregularly-shaped dense clumps of heterochromatin. The extensive cytoplasm is rich in numerous cell organelles and cell inclusions. While the perinuclear cytoplasm contains numerous long parallel cisternae of GER, ribo-and polyribosomes, several Golgi complexes and mitochondria, the peripheral cytoplasm contains predominantly three types of cell inclusions: a great number of large lipid droplets, several shell globule clusters, and a very small amount of glycogen-like particles. The most characteristic features of vitellocytes in P. pastinacae are having almost no traces of glycogen and the great number of large, highly osmiophobic lipid droplets representing saturated fatty acids. The presence of large amounts of lipids also in two other trypanorhynchs, Grillotia erinaceus (Beneden, 1858) Guiart, 1927 and Dollfusiella spinulifera (Beveridge et Jones, 2000) Beveridge, Neifar et Euzet, 2004, is in strong contrast to the condition in the most evolved cestodes, Cyclophyllidea, that usually show no trace of lipids.
During vitellogenesis in Parachristianella trygonis Trypanorhyncha, Eutetrarhynchidae) we distinguished four stages: (1) gonial or stem cell stage; (2) early differentiation stage concentrated on protein synthetic activity and shell-globule formation; (3) advanced differentiation stage with main cell activity concentrated on carbohydrate synthesis (glycogenesis) and massive glycogen storage in the form of α-glycogen rosettes and β-glycogen particles; and finally (4) mature vitellocyte stage. Early vitellocyte maturation is characterised by: (1) an increase in cell volume; (2) extensive development of large, parallel cisternae of GER that produce proteinaceous granules; (3) development of Golgi complexes engaged in packaging this material; (4) continuous enlargement of proteinaceous granules within vacuoles and their transformation into shell-globule clusters composed of heterogeneous material. Cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate for polysaccharides indicated a strongly positive reaction for the presence of α-glycogen rosettes and β-glycogen particles in the advanced stage of vitellocyte maturation. Both protein synthesis for shell-globule formation and carbohydrate synthesis or glycogenesis, important storage of nutritive reserves for the developing embryos, observed during cytodifferentiation of P. trygonis vitellocytes overlap in time to some extent. Mature vitelline cells are very rich in three types of cell inclusions accumulated in large amounts in their cytoplasm: (1) shell-globule clusters, playing an important role in egg-shell formation; (2) numerous large lipid droplets, as well as a high accumulation of lipid and α-glycogen rosettes and β-glycogen particles that undoubtedly represent important nutritive reserves for the developing embryos. Despite the fact that the type of vitellogenesis and ultrastructure of the mature vitellocyte in P. trygonis appears to differ to some extent from those of three other trypanorhynch species, its general pattern and ultrastructure greatly resembles those observed in other lower cestodes. Factors that may have contributed to the qualitative and quantitative variation in lipids during vitellogenesis among the four species of Trypanorhyncha, are identified and discussed.
Pseudogilquinia pillersi (Southwell, 1929), a poorly known species of trypanorhynch, is redescribed from plerocerci collected from Epinephelus coioides (Hamilton, 1922), Epinephelus malabaricus (Bloch et Schneider, 1801) (Serranidae) and Plectropomus laevis (Lacépède, 1801) (Serranidae) off New Caledonia. These were compared with specimens from Lethrinus atkinsoni Seale, 1910 and Lethrinus miniatus (Forster, 1801) (Lethrinidae) off the north-east coast of Australia as well as syntypes from Protonibea diacantha (Lacépède, 1802) from Sri Lanka. Although size differences were found in parts of the scolex as well as in the sizes of the tentacular hooks, the hook arrangements were identical in all specimens. The differences observed were attributed provisionally to intra-specific variation across a wide geographic and host range.
The first description of vitellogenesis in the Trypanorhyncha is presented in this paper. Though the type of vitellogenesis and mature vitellocyte in Dollfusiella spinulifera appear to be unique among the Eucestoda, to some extent they resemble that observed in the lower cestodes, namely the Tetraphyllidea and Pseudophyllidea. Maturation is characterized by: (1) an increase in cell volume; (2) extensive development of large, parallel, frequently concentric cisternae of GER that produce proteinaceous granules; (3) development of Golgi complexes engaged in packaging this material; (4) continuous enlargement of proteinaceous granules within vesicles and their transformation into shell globule clusters; and (5) progressive fusion of all vesicles, with flocculent material containing the proteinaceous granules and shell globule clusters, into a single very large vesicle that characterises mature vitellocytes of this tapeworm. Cell inclusions in and around the large vesicle consist of flocculent material of a very low density, a few shell globule clusters, moderately dense proteinaceous granules and numerous large droplets of unsaturated lipids. A new previously unreported mode of transformation of proteinaceous granules into shell globule clusters, that evidently differs from that of pseudophyllideans and tetraphyllideans, is described. Cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate for polysaccharides indicates a strongly positive reaction for membrane-bound glycoproteins in all membranous structures such as GER, mitochondria, Golgi complexes, nuclear and cell plasma membranes. Similar staining revealed β-glycogen particles scattered in the cytoplasm of maturing vitellocytes. Typical cytoplasmic β-glycogen particles appear mainly during early vitellocyte maturation but it is characteristic for this species that they are only seldom visible in mature cells. Some working hypotheses concerning the interrelationship between this particular pattern of vitellogensis, possible mode of egg formation in D. spinulifera, its embryonic development and trypanorhynchean life cycle, are drawn and discussed.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.