Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Trichoderma asperellum
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Banana fruits are highly perishable and prone to microbial infection that cause significant damage. Fungicides and pesticides that are used to control this infection are toxic to man and animals, hence there is the need for environmentally friendly control measures of fruit rot pathogens. Simultaneous inoculation of fruits with Trichoderma species and rot pathogens resulted in rot on the fingers, but rot produced by T. asperellum NG-T161 alone or in combination with the pathogens was reduced, compared to rot produced by the pathogens alone. Treatment of fruits with conidia and culture filtrates of T. asperellum NG-T161 for 30 min prior to inoculation with the pathogens provided a better control than their simultaneous application. Only Trichoderma species were recovered on plated portions of rotted tissues from inoculations with the pathogens and the antagonists on the fruits. At 50% (v/v) the filtrates inhibited the mycelial growth of Fusarium oxysporum and Colletotrichum musae by 49.7 and 60.3% respectively but Lasiodiplodia theobromae was not inhibited. T. asperellum strains were found to be mycoparasitic on banana fruit rot pathogens. Conidia and culture filtrates of T. asperellum NG-T161 controlled the rot on banana fruits. It could be developed into a biopesticide for the control of postharvest banana fruit rot pathogens.
Phytophthora pathogens cannot be controlled with well−known fungicides, because as oomycetes they do not synthesize chitin and ergosterol. Phytopathogenic microorganisms of Phytophthora genus offers an alternative to pesticides. The aim of the study was to understand the interactions among the host silver birch (Betula pendula), a common forest tree species in Polish lowlands and in lower mountain locations, and its primary pathogen Phytophthora plurivora as well as potential Biological Control Agents Bacillus subtilis and Trichoderma asperellum. The 2−year−old silver birch seedlings were selected for this experiment. Interactions between P. plurivora and B. subtilis, producing peptide antibiotics including polymyxin B and subtiline, stimulated growth of birch seedlings. Comparing to the control a stimulation of both height and root collar diameter of plants was observed when B. subtilis was added into the soil of pots. It is a saprophyte, decomposing organic compounds of plant origin. However, the application of bacterium into the rhizosphere soil stimulated more shoots growth than roots. The application of T. asperellum into the soil stimulated development of roots, and in consequences the above−ground parts of plants. However, in the combination with pathogen, T. asperellum protected the roots only partially. The presence of pathogen and its antagonists increases the biomass of birches compared to control plants. Chlorophyll fluorescence studies proved better parameters like total performance index (PI total) after application of B. subtilis, in contrast, interaction between B. subtilis and P. plurivora negatively affected photosynthesis causing weakening of plants. The higher content of carboxylic acids, observed in the variant with T. asperellum + P. plurivora, indicates the initiation of biochemical defence processes in birch leaves cells.
Five potato cultivars were grown in a micro-plot field experiment (under conditions of natural infection by pathogens). In experimental treatments, potatoes were treated with Trifender WP, whereas control plants were not treated with growth regulators. A greenhouse experiment, conducted simultaneously, involved three treatments: 1. control (no biostimulant treatment, no inoculation), 2. inoculation (potato plants inoculated with P. infestans), 3. Trifender WP+inoculation (soil and foliar application of Trifender WP followed by inoculation with the pathogen 2 days after the last treatment). The research material was potato petioles, in which changes in the concentration of analyzed chlorogenic acids were determined using the Waters Acquity UPLC technique. In comparison with the control treatment, higher concentrations of the 5-caffeoylquinic acid (5-CQA), 4-caffeoylquinic acid (4-CQA) and 3-caffeoylquinic acid (3-CQA) were found in potatoes treated with Trifender WP, and in cultivars with blue-purple and red-colored flesh than in those with yellow and cream-colored flesh (field experiment). In the greenhouse experiment, the content of individual chlorogenic acids increased in the petioles of potatoes inoculated with P. infestans and inoculated with the pathogen after the application of Trifender WP, compared with the control treatment.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.