Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 33

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  TDR technique
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The relative permittivity of water decreases with increasing temperature. Therefore, it is likely that the soil water content determined with time domain reflectometry (TDR) is influenced by temperature. We derived a correction based on a refractive mixing model. Our field experiment on a peat soil and laboratory experiments on disturbed sand and loam samples showed that there exist significant temperature effects. The magnitude of these effects is a function of water content and temperature. Both the refractive mixing model-based correction and Ledieu’s correction compensated temperature effects reasonable well. We recommend Ledieu’s correction for its simplicity: only information of the soil temperature is needed to correct the measured water content. The model-based correction needs additional information of the TDR calibration function. Our laboratory experiments on disturbed clay samples however, did not show a temperature effect. We suggest that the electrical conductivity counteracts the temperature effects in clay.
A number of factors are known to influence the hydraulic conductivity (K) of soils. While a large number of laboratory and field methods have been developed over the years, most of them are applicable mainly for the measurement of hydraulic properties in saturated soils. Moreover, those methods omit such factors affecting hydraulic conductivity as soil volume changes (swelling or shrinkage) and external load simulating the location of the soil tested. The purpose of this paper is to present direct and simple methods for estimation of hydraulic properties, mainly conductivity of unsaturated soils. The methods proposed are based on evaluation of soil-water potential and water outflow from a soil sample. The test methods allow the 1- and 3-dimensional stress states of the soil and pore-fluid to be monitored. The procedure allows also to monitor the changing soil moisture using the TDR technique. The modified apparatus (triaxial apparatus, consolidometer and tempe pressure cell), soils and procedures are described first, and then the results of tests are presented and reviewed. Interpretation of test results is made using the Multi-step method. Results obtained showed that the stress states simulating the location of soil affected the hydraulic parameters significantly. The test results confirmed the usefulness of the methods proposed for testing the porous medium with the geometrical changes of soil (swelling/shrinkage) considered.
The paper presents a mathematical model developed for the description of water movement in selected construction materials. In the creation of the model the Richards equation was employed that was introduced in 1931 for a homogeneous and isotropic soil medium. The equation was solved with the method of finite differences, using an explicit scheme. The experiment was conducted on a sample made of autoclaved cellular concrete in which TDR probes were placed for moisture measurement. Water movement in the sample was caused by capillary rise. Results from computer simulation were compared with those obtained in the experiment. It was demonstrated that the Richards equation can be used for the description of the dynamics of air-water conditions in cellular concrete. It was also found that differences between results obtained from the simulation and those obtained from the experiment could have been caused by the lack of calibration of the TDR apparatus that should be made individually for every medium.
The objective of this paper is to present a method for determining diurnal distribution of the intensity of effective non rainfall water flux. It was found that the application of TDR technique for the determination of diurnal dynamics of effective non rainfall water flux requires temperature correction of sensed volumetric moisture contents. Without temperature correction the error of estimated non rainfall water flux can be as much as 26%. In addition, the effect of temperature changes on the soil surface was determined in 0.5, 1, 2, 3, 4, and 5 hours periods. It was found that the intensity of effective non rainfall water flux was determined to the greatest extent by the rate of temperature drop during the period of 3 h preceding the non rainfall water flux determination. The agreement of non rainfall water flux calculated with the method proposed and that obtained by the collector was better for dew than for hoarfrost periods.
16
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Metoda wyznaczania strefy czułości sensorów TDR

63%
W niniejszej pracy przedstawiono metodę wyznaczania strefy czułości sensorów stosowanych do pomiaru wilgotności objętościowej w ośrodkach porowatych. Analizom poddano czujniki wykorzystujące reflektometrię domenowo czasową (TDR), wyprodukowane w Instytucie Agrofizyki Polskiej Akademii Nauk w Lublinie. Na podstawie przeprowadzonych badań laboratoryjnych stwierdzono, że zasięg strefy czułości sensorów typu laboratoryjnego i polowego jest zależny od zawartości wody w ośrodku, w którym prowadzone są pomiary. W przypadku czujnika laboratoryjnego (LP/ms), gdy oznaczenia prowadzone są w glebie całkowicie suchej, strefę czułości stanowi objętość prostopadłościanu o wymiarach 0,6 cm i 5,8 cm i grubości równej średnicy prętów sondy LP. Natomiast gdy gleba jest nasycona to strefę czułości stanowi walec eliptyczny o wysokości 5,5 cm i promieniach 0,5 cm i 0,8 cm. W przypadku czujnika polowego (FP/mts), gdy pomiary prowadzone są w glebie całkowicie suchej, strefę czułości stanowi walec eliptyczny o wysokości 10,2 cm i promieniach 0,3 cm i 0,4 cm. Natomiast gdy gleba jest nasycona wodą walec o wysokości 11,2 cm i podstawie koła o promieniu 1,7 cm.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.