Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Serratia marcescens
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
For production of protease by a new strain, Serratia marcescens SB08, optimization of the fermentation medium and environmental conditions, were carried out by applying factorial design and response surface methodology. The results of factorial design showed that pH, agitation, incubation time and yeast extract were the key factors affecting protease production. The optimal cultural conditions for protease production obtained with response surface methodology were pH 6.0, agitation 100 rpm, incubation time 51.0 h and yeast extract 3.0 g/l. This model was also validated by repeating the experiments under the optimized conditions, which resulted in the maximum protease production of 281.23 U/ml (Predicted response 275.66 U/ml), thus proving the validity of the model. Unexplored Serratia marcescens SB08 strain isolated from enteric gut of sulphur butterfly (Kricogonia lyside) was taken up for this study. This study demonstrates the ability of the new strain, Serratia marcescens SB08, for protease production and also that smaller and less time consuming statistical experimental designs are adequate for the optimization of fermentation processes for maximum protease production.
Twenty Serratia marcescens isolates from clinical specimens were examined for their cytotoxic activity on four cell lines (HEp-2, Vero, CHO, J774). Most of the isolates were found to be cytotoxic to CHO (70%), Vero (75%) and HEp-2 cells (90%). CHO cells were the most sensitive to cell-free supematants, followed by HEp-2 and Vero cells. Two strains produced cytotonic toxins which caused elongation of CHO cells. Moreover, twelve isolates (60%) revealed cytotoxic potential to macrophage cell line J774. The results indicate that these bacteria may destroy phagocytes and epithelial cells, which may lead to spread within the host.
In this work we report on the isolation of a local molybdenum-reducing bacterium. The bacterium reduced molybdate or Mo(6+) to molybdenum blue (oxidation states between 5+ to 6+). Electron donors that supported cellular growth were sucrose, maltose, mannitol, fructose, glucose and starch (in decreasing order) with sucrose supporting formation of the highest amount of molybdenum blue at 10 g/l after 24 hours of static incubation. The optimum molybdate and phosphate concentrations that supported molybdate reduction were 20 and 5 mM, respectively. Molybdate reduction was optimal at 37°C. The molybdenum blue produced from cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 ran. The isolate was tentatively identified as S. marcescens strain Dr.Y9 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. No inhibition of molybdenum-reducing activity was seen using electron transport system (ETS) inhibitors such as antimycin A, ¹HQNO (Hydroxyquinoline-N-Oxide), sodium azide and cyanide suggesting that the ETS of this bacterium is not the site of molybdate reduction.
In this work, we present the construction of a metagenomic library in Escherichia coli using pUC19 vector and environmental DNA directly isolated from Antarctic topsoil and screened for lipolytic enzymes. Screening on agar supplemented with olive oil and rhodamine B revealed one clone with lipolytic activity (Lip 1) out of 11000 E. coli clones. This clone harbored a plasmid, pLip 1, which has an insert of 4722 bp that was completely sequenced from both directions. Further analysis of the insert showed three open reading frames (ORFs). ORF2 encoded a protein (Lip 1) of 469 amino acids with 93% identity to the uncultured Pseudomonas sp. lipase LipJ03. Amino acid sequence comparison and phylogenetic analysis indicated that Lip 1 lipase was closely related to family I subfamily 3. Furthermore, we present a three-dimensional model of lipase Lip 1 which was generated based on the two known structures of mesophilic lipases from Pseudomonas sp. MIS 38 (PML lipase, PDB; 2Z8X) and Seiratia marcescens (SML lipase, PDB: 2QUB). Finally, we report the results of comparisons between lipase Lip 1 and mesophilic lipases and point out similarities and differences in the catalytic site and in other parts of the analyzed structures.
The incidence of extended-spectrum β-lactamases (ESBLs) was analyzed in Enterobacteriaceae population circulating in the Upper Silesian Child and Mother Health Center in Katowice (USC&MHC). Altogether 1164 clinical specimens, collected from children hospitalized in 8 different hospital units of USC&MHC were investigated. Five hundred and eighty-five clinical isolates of the family Enterobacteriaceae were identified in specimens collected from 403 patients. Two hundred and twenty-nine Enterobacteriaceae strains (39%) isolated from 162 patients were found to be putative ESBL producers as revealed by double-disc synergy (DDS) test. ESBL activity was the most prevalent in the population of Klebsiella pneumoniae (77%), followed by Klebsiella oxytoca (50%), Serratia marcescens (43%), Escherichia coli (30%), Enterobacter spp. (18%) and Proteus mirabilis (12%). ESBL producers demonstrated also wide resistance to the non-β-lactam antimicrobial co-trimoxazole (93%) and the aminoglycosides netilmicin (88%), gentamicin (84%) and amikacin (79%).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.