Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Polish coast
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of the research was to identify the potential for the use of probability density functions (PDF) in modeling of near-surface wind speed. The approaches of Empirical Orthogonal Functions (EOF) and Canonical Correlation Analysis (CCA) are used in combination with 2-parametric Weibull distribution. The downscaling model was built using a diagnosed relationship between sea level pressure (SLP) patterns over Europe and the Northern Atlantic and estimated monthly values of Weibull parameters at 9 stations along the Polish Baltic Coast. The obtained scale (A) and shape (k) parameters make it possible to describe temporal variations of wind fields and their theoretical probability values. This may have further application in the modeling of extreme wind speeds for seasonal forecasting, climate prediction or in historical reconstructions. The model evaluation was done separately for the calibration (1971-2000) and validation periods (2001-2010). The scale parameter was reconstructed reasonably, while there were some problematic issues with the shape parameter, especially in the validation period. The quality of the developed models is generally higher for the winter season, due to larger SLP gradients, whereas the results for the spring and summer seasons were less satisfactory. Despite this, the 99th percentile of theoretical wind speeds are in most cases satisfactory, due to the lesser importance of the shape parameter for typical distributions in the analyzed region.
The aim of this study was to recognize the possibility of downscaling probability density function (PDF) of daily precipitation by means of canonical correlation analysis (CCA). Sea level pressure (SLP) over Europe and the North Atlantic was used as a predictor. A skilful statistical model could be used to generate projections of future changes of precipitation PDF driven by GCM (General Circulation Model) simulations. Daily precipitation totals from 8 stations located on the Polish coast of the Baltic Sea covering the period 1961-2010 were used to estimate the gamma distribution parameters, and only wet days (i.e. ≥0.1mm) were taken in the analysis. The results of the Kolmogorov-Smirnov test and comparison of empirical and theoretical (gamma-distributed) quantiles proved that gamma distribution gives a reliable description of daily precipitation totals. The validation of CCA models applied to gamma parameters revealed that the reliable reconstruction of precipitation PDF is possible only for average long-term conditions. In the case of individual months/seasons the agreement between empirical and reconstructed quantiles is poor. This study shows the potential of modelling of precipitation PDF, however efforts should be made to improve model performance by establishing more reliable links between regional forcing and the variability of the gamma parameters.
Space-time variations in chlorophyll a (Chl a) concentrations in the surface water of upwelling regions along the Polish coast of the Baltic Sea were analysed. Carried out between 1998 and 2002 in the warmer season (from April till October), the measurements were targeted mainly at the Hel upwelling. Satellite-derived sea surface temperature (AVHRR) and Chl a data (SeaWiFS) were used. Generally speaking, the Chl a concentration increased in the upwelling plume, except along the Hel Peninsula, where two scenarios took place: a reduction in Chl a concentration in spring and an increase in autumn.
Coastal upwelling often reveals itself during the thermal stratification season as an abrupt sea surface temperature (SST) drop. Its intensity depends not only on the magnitude of an upwelling-favourable wind impulse but also on the temperature stratification of the water column during the initial stage of the event. When a ‘chain’ of upwelling events is taking place, one event may play a part in forming the initial stratification for the next one; consequently, SST may drop significantly even with a reduced wind impulse. Two upwelling events were simulated on the Polish coast in August 1996 using a three-dimensional, baroclinic prognostic model. The model results proved to be in good agreement with in situ observations and satellite data. Comparison of the simulated upwelling events show that the first one required a wind impulse of 28 000 kg m−1 s−1 to reach its mature, full form, whereas an impulse of only 7500 kg m−1 s−1 was sufficient to bring about a significant drop in SST at the end of the second event. In practical applications like operational modelling, the initial stratification conditions prior to an upwelling event should be described with care in order to be able to simulate the coming event with very good accuracy.
This study is based on a 50-year data series (1964-2013) of total solar radiation (G) from the Kołobrzeg – station that is located on the Polish Baltic Sea coast and is characterised by a very high level of air quality. To find and remove gross errors, quality control checking procedures were applied in this study. Additionally, the homogeneity of the G series in this study has been tested on a monthly basis by using of the Standard Normal Homogeneity Test for single shifts. We found a statistically non-significant decrease in G during the period from 1964 to 2013. The decrease in the 5-year mean total solar radiation is evident from the beginning of the 1980s, with the minimum mean value occurring in the second half of the 1990s, while G slightly increased from the early 2000s. The analysis of seasonal G patterns shows that total solar radiation in summer is the most similar to the annual pattern and only the summer series trend shows a statistically significant decrease in G. We have also found two noticeable tendencies in monthly anomalies of G over the studied decades; they are negative trends in May and August. The shape of the decadal daily G histogram remained unchanged during the analysed decades.
Extreme sea levels – storm-generated surges and falls – on the Polish coast are usually the effects of three components: the volume of water in the southern Baltic (the initial level preceding a given extreme situation), the action of tangential wind stresses in the area (wind directions: whether shore- or seaward; wind velocities; and wind action duration), and the sea surface deformation produced by deep, mesoscale baric lows moving rapidly over the southern and central Baltic that generate the so-called baric wave. Among these factors, the baric wave is particularly important for, i.e. the water cushion underneath the baric depression, moving along the actual atmospheric pressure system over the sea surface.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.