Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 33

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Permian
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The Middle Permian Tapinocephalus Assemblage Zone in South Africa has produced a rich record of tetrapods dominated by dinocephalian therapsids and pareiasaurid parareptiles. In this study we reassess the affinities of a specimen from this horizon previously identified as a procolophonoid and provide evidence that it is instead referable to a nycteroleter parareptile, an identification that is more compatible with the age of this fossil. Accordingly, this specimen represents the first record of a nycteroleter in Gondwana.
This paper describes the vertebrate ichnofauna from the Tumlin Sandstone (Buntsandstein) of the Holy Cross Mountains in Poland. The footprint assemblage has previously been regarded as Early Triassic in age; however, ichnogenera characteristic of the Late Permian are now recognized. Lack of representatives of the ichnofamily Chirotheriidae, characteristic of continental Triassic sediments worldwide, also indicates a Permian rather than a Triassic age for the studied assemblage. Three ichnogenera (Batrachichnus, Limnopus, and Amphisauropus) produced by amphibians are recognized, the remainder (Varanopus, Chelichnus, Dimetropus, Rhynchosauroides, Palmichnus, Paradoxichnium, and Phalangichnus) being of reptilian origin. Batrachichnus cf. salamandroides (Geinitz, 1861), Limnopus cf. zeilleri (Delage, 1912), Amphisauropus cf. latus Haubold, 1970, Varanopus aff. microdactylus (Pabst, 1896), Chelichnus cf. duncani (Owen, 1842), and Dimetropussp. are recorded in the Lower Buntsandstein for the first time. The following new ichnospecies are erected: Rhynchosauroides kuletae ichnosp. nov., Palmichnus lacertoides ichnosp. nov., Paradoxichnium tumlinense ichnosp. nov., Phalangichnus gradzinskii ichnosp. nov., and Phalangichnus gagoli ichnosp. nov.
A new temnospondyl is described from the Middle-Upper Permian sequence of the Paraná Basin (Rio do Rasto Formation) in southern Brazil. The material consists of disarticulated cranial and postcranial elements, preserved in association. The cranial elements include part of the orbital region of the skull roof, the basicranium, a number of en-docranial elements, stapes and a right hemimandible. The postcranial elements include vertebrae, ribs, pectoral girdle elements, a right femur and a cluster of scales. The new species displays a rhinesuchid pattern, which is similar to the South African rhinesuchids from the Upper Permian Beaufort Group of the Karoo Basin, but differs from them by the presence of a robust and elongated epipterygoid with a blade-like anterior process in addition to elongated and deeper muscular pockets on the parasphenoid, which allow the assignment of this specimen to a new species. However, the phylogenetic analysis grouped the material described herein andAustralerpeton cosgriffi inside Stereospondylomorpha, in a transitional position between the Laurasian assemblages and South African temnospondyls. This result supports a connection between the Brazilian and Eastern European Permian fauna and provides important data for future biostratigraphic studies.
The fusulinid foraminifers of Schellwienia arctica (Schellwien, 1908) have been investigated from Polakkfjellet Mt., south Spitsbergen, and used as biostratigraphic marker for the latest Carboniferous-?earliest Permian strata of the Treskelodden Formation. A series of thin sections enable to investigate the internal structure and growth pattern of individual specimens. The observed variation of growth suggests dynamic environmental conditions at the investigated location and most likely over one-year long life span of this foraminifer.
Sphenacodontid synapsids were major components of early Permian ecosystems. Despite their abundance in the North American part of Pangaea, they are much rarer in Europe. Among the few described European taxa is Neosaurus cynodus, from the La Serre Horst, Eastern France. This species is represented by a single specimen, and its validity has been questioned. A detailed revision of its anatomy shows that sphenacodontids were also present in the Lodève Basin, Southern France. The presence of several synapomorphies of sphenacodontids—including the teardrop-shaped teeth—supports the assignment of the French material to the Sphenacodontidae, but it is too fragmentary for more precise identification. The discovery of sphenacodontids in the Viala Formation of the Lodève Basin provides additional information about their ecological preferences and environment, supporting the supposed semi-arid climate and floodplain setting of this formation. The Viala vertebrate assemblage includes aquatic branchiosaurs and xenacanthids, amphibious eryopoids, and terrestrial diadectids and sphenacodontids. This composition is very close to that of the contemporaneous assemblages of Texas and Oklahoma, once thought to be typical of North American lowland deposits, and thus supports the biogeographic affinities of North American and European continental early Permian ecosystems.
6
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Conodonts of the Upper Permian of Poland

84%
Eight species of conodonts, assigned to five genera, are described from the Zechstein limestone horizon of the Werra cyclothem from Wejherowo I.G.-1 boring in Pomerania. Lonchodina vistulensis n.sp., Prioniodina lindstroemi n.sp. and Hibbardella baltica n.sp. have been erected as new species. The Zechstein conodonts have been compared with the conodonts being parts of so-called natural assemblages.
7
84%
European Russia has been the source of many procolophonoid taxa from both the Permian and Triassic, and a Permian origin for the procolophonoid family Procolophonidae has been based on the Russian taxon Microphon exiguus. Recently, this taxon was reclassified as a seymouriamorph and, in its place, the taxa Nyctiphruretus, Suchonosaurus, and Kinelia from the Middle and Upper Permian of Russia were suggested as “procolophons”, using evolutionary−systematic classification methods. In recent phylogenies, however, Nyctiphruretus has been recovered as a non–procolophonoid parareptile, whereas Kinelia and Suchonosaurus have never been included in a phylogenetic study. Re−examination indicates that Suchonosaurus is a member of the procolophonoid subfamily Procolophonidae based on the shape of the maxillary bone and the external naris, the laterally visible maxillary depression, and the number and type of maxillary teeth. Kinelia, on the other hand, is excluded from the Procolophonoidea because of its subpleurodont dental attachment and lack of any procolophonoid features. Thus, Suchonosaurus is the only confirmed Permian procolophonid from the Permian of Russia. Additionally, re−examination of the holotype of Microphon exiguus confirms that it is identical to the seymouriamorph specimens recently included in the genus Microphon and that it lacks procolophonoid features. The earliest unequivocal record of the subfamily Procolophonidae is confirmed from the Late Permian of Russia, making Russia the only region where, with certainty, both Permian and Triassic procolophonids have been discovered.
The origin of tympanic hearing in early synapsids is still controversial, because little is known about their inner ear and the function of their sound conducting apparatus. Here I describe the earliest known tympanic ear in the synapsid lineage, the ear of Pristerodon (Therapsida, Anomodontia) from the Late Permian of South Africa, which was virtually reconstructed from neutron tomographic data. Although Pristerodon is not a direct ancestor of mammals, its inner ear with distinctive cochlear cavity represents a connecting link between the primitive therapsid inner ear and the mammalian inner ear. The anatomy of the sound conducting apparatus of Pristerodon and the increased sound pressure transformer ratio points to a sensitivity to airborne sound. Furthermore, the origins of the cochlea and impedance matching hearing in synapsids coincided with the loss of contact between head and substrate, which already took place at least in Late Permian therapsids even before the postdentary bones became detached from the mandible.
The fusellar tissue of Palaeozoic rhabdopleurid pterobranchs has been studied using the SEM techniques. The fibrillar material of Ordovician Kystodendron ex gr. longicarpus and Rhabdopleurites primaevus exhibits a distinct dimorphism, comprising: (1) thinner, wavy and anastomosing/branching fusellar fibrils proper, producing a tight three-dimensional meshwork; and (2) long, more or less straight and unbranched cortical fibrils, sometimes beaded, and arranged in parallel. These fibrils are similar to the fusellar and cortical fibrils of graptolites, respectively. Until now, dimorphic fibrils and their arrangement within fusellar tissue were regarded as unique characters of the Graptolithina. In general, the fibrillar material of these fossils is partially preserved in the form of flaky material (new term) composed of flakes (new term). Flakes are interpreted as flattened structures originating from the fusion of several neighbouring tightly packed fibrils. A Permian rhabdopleurid, referred to as Diplohydra sp., reveals a fabric and pattern of fusellar tissue similar to that of both Ordovician rhabdopleurids but devoid (?) of cortical fibrils. The results presented here question views that: (1) substantial differences in fabric and pattern of fusellar tissue exist between fossil pterobranchs and graptolites; and (2) the ultrastructure of pterobranch periderm has remained unchanged at least since the Ordovician. The Palaeozoic rhabdopleurids investigated are closer ultrastructurally to graptolites than to contemporary pterobranchs. The pterobranchs and the graptolites should be treated as members of one class - the Graptolithoidea.
The teeth of a well known late Palaeozoic cladodont chondrichthyan, “Cladodus” occidentalis from Russia, USA, and England are restudied and a new generic name, Glikmanius gen. nov., is proposed for this species. Yet another tooth−based species, formerly described as ?Symmorium myachkovensis, occurring on the Russian Platform and in Nebraska, is considered to belong to the newly erected genus. Although there is no direct evidence that Glikmanius possessed fin spines, the broad similarity between its teeth and those of Ctenacanthus compressus suggests it had a ctenacanthiform affinity. The possible relationships between Glikmanius, Cladodus sensu stricto, “Ctenacanthus” costellatus, and Heslerodus, are suggested. However, the proposition put forward by an earlier author that the teeth of Heslerodus might represent the lower jaw dentition of G. myachkovensis, is rejected. The overall resemblance of Glikmanius teeth and those of Cladoselache and Squatinactis is recognised as convergent.
The article by Ptaszyński and Niedźwiedzki (2004) on vertebrate tracks from the well−known Tumlin Sandstone provides important documentation of the unique terrestrial ichnofauna of the Holy Cross Mountains in Poland. However, two of the major conclusions of this paper raise my objections. The authors propose a new position for the Permian–Triassic (P–Tr) boundary within the Buntsandstein succession of the regional lithostratigraphical scheme. In a conclusion of global significance, the authors find no signature of a mass extinction in the Late Permian land−dwelling tetrapod communities. Both of these issues are reviewed below.
This paper describes fourteen brachiopod species in eleven genera from the Late Permian Wuchiapingian Coal Series (Lungtan Formation) of South China. Of these, the shell bed fauna from the basal Lungtan Formation is interpreted to represent the onset of the recovery of shelly faunas in the aftermath of the Guadalupian/Lopingian (G/L) mass extinction in South China. The post−extinction brachiopod faunas in the Wuchiapingian are characterized by the presence of numerous Lazarus taxa, survivors, and newly originating taxa. These elements capable of adapting their life habits were relatively more resistant to the G/L crisis. The post−extinction faunas, including survivors and the elements originating in the recovery period, have no life habit preference, but they were all adapted to a variety of newly vacated niches in the Late Permian oceans. Two new species, Meekella beipeiensis and Niutoushania chongqingensis, are described, and two Chinese genera, Niutoushania and Chengxianoproductus, are emended based on re−examination of the type specimens and new topotype materials from the Lungtan Formation.
19
84%
The fossil remains of a hemichordate exoskeleton, recognized as fragments of the stolons and their cyst−like swellings connected with the fusellar zooidal tubes, were derived by chemical isolations from Late Permian (Kazanian) mudstones of the Svalis Dome (central Barents Sea, Norway). These fossils, referred to as Diplohydra szaniawskii sp. nov., are the first undoubted representatives of the class Graptolithoidea found in Permian deposits. The genus Diplohydra Kozłowski, 1959, known previously only from the Ordovician and originally established as a thecate hydroid taxon, is reinterpreted as an aberrant member of the order Rhabdopleuroidea. This strange hemichordate, characterized by fusellar tubes distinctly narrower than stolon−like tubes and their swellings, reveals a certain degree of dimorphism in the stolon system. D. szaniawskii sp. nov. also displays some peculiar morphological features common to the Ordovician rhabdopleuroid genus Rhabdopleurites Kozłowski and the stolonoid genus Stolonodendrum Kozłowski.
Bryozoans from the Lower Permian Treskelodden and Wordiekammen formations of southern and central Spitsbergen respectively, Svalbard, have been studied. Twenty species are identified, including one new genus, Toulapora gen. nov., with Toulapora svalbardense as type species and one new species, Ascopora birkenmajeri sp. nov. The taxonomic composition is typical Lower Permian, with species in common with Timan−Pechora and the Urals (Russia) and Ellesmere Island (the Canadian Arctic). Growth habits reflect a moderately to deeper shelf environment.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.