Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Middle Cambrian
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The Middle Cambrian Oesia disjuncta, a monospecific genus, is known only from the celebrated Burgess Shale of British Columbia. It has been re−interpreted by Szaniawski (Acta Palaeontologica Polonica 50:1–8; 2005) as a chaetognath, a distinctive phylum whose exact position in the protostomes is still controversial. Unequivocal chaetognaths, that have no similarity to Oesia, are already known to occur in the Chengjiang Lagerstätte (Lower Cambrian, S.W. China), and here I describe the first example of a chaetognath from the Burgess Shale itself. Comparisons between Oesia and chaetognaths fail to find any significant homologies. Whilst the phyletic position of Oesia is very uncertain, a place in the hemichordates may be worth exploring.
Walcott (1911) erected the new genus and species Oesia disjuncta and assigned them to the polychaete annelids, based on a small collection of similar fossils from the famous Middle Cambrian Burgess Shale. In 2002 I suggested that the species is “possibly related to chaetognaths” (Szaniawski 2002: 405). Later, after obtaining new photos of the specimens and making comparative investigations with the extant chaetognaths, I was able to describe many significant similarities, and came to the conclusion that O. disjuncta indeed is an ancestral chaetognath (Szaniawski 2005). This interpretation already has been accepted in several publications (Vannier et al. 2005; Ball and Miller 2006; Hu et al. 2007. Giribet 2008). Ball and Miller (2006: 594) confirmed not only its “... remarkable resemblance to modern chaetognaths” but also correctness of recognition of all its organs. They even reproduced a part of my illustration showing them (Ball and Miller 2006: fig. 2). Vannier et al. (2006: 629) combined the problem with the open question of the systematic position of another Burgess Shale fossil Amiskwia sagittiformis Walcott, 1911, and expressed their reservation based on “...the lack of clear evidence of a grasping apparatus...”. Only Conway Morris (2009) firmly disagreed with this diagnosis and even devoted a special “discussion” article addressing the issue. However, that article contains several ambiguities and misunderstandings which need clarification.
Diverse carbonaceous microfossils, including exceptionally preserved remains of non−biomineralizing metazoans, are reported from a basal middle Cambrian interval of the Kaili Formation (Guizhou Province, China). The application of a gentle acid maceration technique complements previous palynological studies by revealing a larger size−class of acritarchs, a richer assemblage of filamentous microfossils, and a variety of previously unrecovered forms. Metazoan fossils include Wiwaxia sclerites and elements derived from biomineralizing taxa, including chancelloriids, brachiopods and hyolithids, in common with previously studied assemblages from the early and middle Cambrian of Canada. In addition, the Kaili Formation has yielded pterobranch remains and an assemblage of cuticle fragments representing “soft−bodied” worms, including a priapulid−like scalidophoran. Our results demonstrate the wide distribution and palaeobiological importance of microscopic “Burgess Shale−type” fossils, and provide insights into the limitations and potential of this largely untapped preservational mode.
More than forty specimens from the middle Cambrian Burgess Shale reveal the detailed anatomy of Isoxys, a worldwide distributed bivalved arthropod represented here by two species, namely Isoxys acutangulus and Isoxys longissimus. I. acutangulus had a non−mineralized headshield with lateral pleural folds (= “valves” of previous authors) that covered the animal’s body almost entirely, large frontal spherical eyes and a pair of uniramous prehensile appendages bearing stout spiny outgrowths along their anterior margins. The 13 following appendages had a uniform biramous design—i.e., a short endopod and a paddle−like exopod fringed with marginal setae with a probable natatory function. The trunk ended with a flap−like telson that protruded beyond the posterior margin of the headshield. The gut of I. acutangulus was tube−like, running from mouth to telson, and was flanked with numerous 3D−preserved bulbous, paired features interpreted as digestive glands. The appendage design of I. acutangulus indicates that the animal was a swimmer and a visual predator living off−bottom. The general anatomy of Isoxys longissimus was similar to that of I. acutangulus although less information is available on the exact shape of its appendages and visual organs. I. longissimus is characterized by extremely long anterior and posterior spines. There are now seven Isoxys species known with soft−part preservation, I. acutangulus, I. longissimus from the Burgess Shale, I. auritus and I. curvirostratus from the Maotianshan Shale of China, I. communis and I. glaessneri from the Emu Bay Shale of Australia and I. volucrisfrom Sirius Passet in Greenland. The frontal appendages of Isoxys strongly resemble those of other Cambrian arthropods, characterized by a single pair of “great appendages” with a shared prehensile function yet some variability in length and shape.
Gogia parsleyi Zamora sp. nov. and Gogia sp. are described from two different echinoderm assemblages, both from the middle Cambrian of the Murero Formation (Iberian Chains, NE Spain). Gogia parsleyi is reconstructed and described on the basis of fifteen complete or partial specimens and numerous isolated plates. It is characterised by spiralled brachioles, simple epispires, sometimes covered by stereomic domes or tiny cover plates, and by thecal plates arranged in subregular circlets. This gogiid population comprises juveniles, advanced juveniles and mature individuals. The material was found in the upper part of the Murero Formation (upper Caesaraugustian–lower Languedocian). Gogia sp. is represented by two almost complete specimens and several isolated plates from the lower part of the Murero Formation (lower Caesaraugustian). The genus Gogia was first described in Western Gondwana from the Languedocian (upper middle Cambrian) of France, but the material from Spain is older and represents the oldest record of this genus in Gondwana, suggesting an early migration from Laurentia. The gogiids are well preserved in two echinoderm Lagerstätten, which, together with other echinoderms, comprise the majority of the fossil fauna. Both levels are derived from obrution deposits produced in calm and open marine conditions, sometimes affected by sporadic storms. Their holdfast morphology suggests that these gogiids were low−tier suspension feeders, living attached to trilobite fragments in a soft, muddy environment.
6
67%
The arthropod Oelandocaris oelandica from the upper Middle Cambrian “Orsten” of Sweden was recently recognized as a member of the early phase of crustacean evolution based on additional morphological detail from new specimens. Here we present a detailed investigation of all available material. It includes the description of a 400 μm long specimen probably representing an early developmental stage. Variation in size correlated with variation of trunk−segment numbers allowed recognition of different instars. The largest specimens do not exceed an estimated length of about 1 mm, indicating that our material may consist only of immature specimens. The characteristic, extremely long antennula of O. oelandica branches into three long rods. It may have served as the major structure to sweep in food, aided by the two subsequent appendages. These and the more posterior limbs were also responsible for locomotion. Minute pores on the outer edges of the posterior limbs and on the trunk tergites possibly contained sensilla originally, which may have served as water−current detectors. The presence of a minute proximal endite only on the third head appendage suggests a rather basal position of this species within Crustacea, because comparable developmental stages of other known stem crustaceans have such an endite on more of their appendages. Reconstruction of O. oelandica and its life attitudes (referred to the largest instar known) benefited from the application of 3D modelling. These helped, e.g., in identifying the combination of the plesiomorphic feeding function of the antennulae and the specialisation of the exopods of the next two appendages as a step toward the development of a sweep−net mode of feeding, one of the key novelties in the evolution of Crustacea. Such a mode of feeding coupled with locomotion of the three anterior appendages is still practiced in the naupliar and metanaupliar phases of many extant eucrustaceans, and even some adults.
The origin of the Rugosa and relationships between the Rugosa and Scleractinia are debated. In the present account I comment on some recently published phylogenetic reconstructions, which in my opinion, are based on inadequate data.
Limestone erratics in the Early Miocene glacio−marine Cape Melville Formation of King George Island, West Antarctica, have yielded Early and Middle Cambrian small skeletal fossils (SSF) accompanied by calcified cyanobacteria, archaeocyath and spiculate sponges, trilobites and echinoderms. The SSF assemblage comprises disarticulated sclerites of chancelloriids, halkieriids, tommotiids, lapworthellids, palaeoscolecids, hyolithelminths, lingulate brachiopods, helcionelloid molluscs, hyoliths, and bradoriids. All 24 described species are common to Antarctica and Australia. Most are recorded here from Antarctica for the first time, including Shetlandia multiplicata gen. et sp. nov. and two new species Byronia? bifida and Hadimopanella staurata. The lithological and fossil contents of the boulders are almost identical with autochthonous assemblages from the Shackleton Limestone in the Argentina Range and Transantarctic Mountains. Cambrian outcrops around the Weddell Sea are a plausible source of the erratics. The fauna is closely similar to that from the uppermost Botomian Wilkawillina Limestone in the Flinders Ranges and Parara Limestone on Yorke Peninsula, and Toyonian Wirrealpa and Aroona Creek Limestones in the Flinders Ranges, as well as the Ramsay Limestone on Yorke Peninsula, all in the Arrowie and Stansbury Basins of South Australia. These very similar faunal and facies successions for Antarctica and Australia strongly support their common biotic and sedimentary evolution on the same margin of a greater Gondwana supercontinent throughout the Early Cambrian.
A new exquisitely preserved stem group echinoderm (cinctan), Lignanicystis barriosensis gen. et sp. nov., is described from the Middle Cambrian of Los Barrios de Luna, North Spain. This displays a unique asymmetrical body plan with ventral projecting nodes that raised the lower surface above the substratum. There are four openings through the body wall: mouth, anus, atrium, and an aligned row of sutural pores of uncertain function. Unlike other cinctans, Lignanicystis has a strongly asymmetrical shape convergent with that of some cornute carpoids. Like cornutes, the test is also elevated above the substratum to allow water flow beneath the theca. In both cases this is probably an adaptation to life in higher water flow regimes.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.