Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Lusatian Neisse River
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The scope of this study was to assess the usefulness of top probability distributions to describe maximum rainfall data in the Lusatian Neisse River basin, based on eight IMWM-NRI meteorological stations. The research material was composed of 50-year precipitation series of daily totals from 1961 to 2010. Misssing measurement data were estimated using a weighted average method. Homogeneity for refilled data were investigated by precipitation double aggregation curve. Correlation between the measurement data varied from 96 to 99% and did not indicate a violation of the homogeneity of rainfall data series. Variability of recorded daily precipitation maxima were studied by linear regression and non-parametric Mann-Kendall tests. Long-term period changes at maximum rainfalls for four stations remained statistically insignificant, and for the other four were significant, although the structure of maximums was relatively similar. To describe the measured data, there were used the Fréchet, Gamma, Generalized Exponential Distribution (GED), Gumbel, Log-normal and Weibull distributions. Particular distribution parameters were estimated using the maximum likelihood method. The conformity of the analyzed theoretical distributions with measured data was inspected using the Schwarz Bayesian information criterion (BIC) and also by the relative residual mean square error (RRMSE). Among others, the Gamma, GED, and Weibull distributions fulfilled the compliance criterion for each meteorological station respectively. The BIC criterion indicated GED as the best; however differences were minor between GED on the one hand and the Gamma and Weibull distributions on the other. After conducting the RRMSE analysis it was found that, in comparison to the other distributions, GED best describes the measured maximum rainfall data.
Current and future climate conditions and their impact on water balance, ecosystems, air quality and bioand agro-climatology were investigated in the region of the Lusatian Neisse within the two EU -projects – NEYMO and KLAPS. This work focuses on the climate analysis of the region at the German-Polish border as a preliminary step for a hydrological analysis of current and future conditions. Observed climatological data were processed and analysed using the indicators air temperature, precipitation, sunshine duration, potential evapotranspiration and the climatic water balance (CWB). The latter defines the difference between precipitation and potential evapotranspiration and is a measure for the climatological water availability in the region. Observations were used to statistically downscale data from Global Circulation Models under various scenarios regarding greenhouse gas emissions (A1B, RCP 2.6, RCP 8.5) and applying the WETTREG-method for regionalization. In total, 50 climate projections for periods up until the end of the 21st century were analysed, with the application of the mentioned indicators. For the period 1971-2010, increasing trends of temperature, precipitation, sunshine duration and potential evapotranspiration were found. This leads to a reduced CWB in the summer half-year (SHY), which could be partly compensated by an increase in the winter half-year (WHY). Trends of temperature, sunshine duration and potential evapotranspiration remain positive for the far future (2071-2100), but precipitation decreases. These climatic conditions aggravate water availability, especially in the SHY. Impacts on water management are very probable and were therefore further investigated in the NEY MO project that applied hydrological models.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.