Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Gymnadenia conopsea
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Studies of plant breeding systems are particularly important when they involve facultative processes, which can be overlooked in natural conditions. This especially applies to species that are considered allogamous, due to their pollination syndrome and floral architecture. We examined the potential level and factors enabling or limiting spontaneous autogamy in three populations of the lepidopteran orchid Gymnadenia conopsea. Using a bagging experiment, we noted the stages of the anther thecae and the positions of the pollinaria at the five phenological stages of the flower, as well as the quantity of autogamously set fruits and the number of properly formed seeds. In the studied populations, autogamy represents an accidental character, with a maximum of 3.3% of fruits set spontaneously per analysed sample in a given population, and with seed numbers ranging from 29 to 354. This process is an environmentally dependent co-product of the mechanisms that enable a position appropriate for touching the stigma (bending of the caudicle) and increase male fitness (disintegration of the massulae), preceded by the gradual opening of the anther chambers. Autopollination of G. conopsea may occur in the flowers at various flowering stages (excluding the beginning of anthesis) at each position on the inflorescence.
The breeding system in Orchidaceae generates many questions about the selfing potential of its representatives. We investigated the ability of spontaneous autogamy of four orchid species: Cephalanthera rubra and Neottia ovata of the Neottieae tribe and Gymnadenia conopsea and Platanthera bifolia of the Orchideae tribe. These species represent diverse specializations of the gynostemium architecture. The self-compatibility and properties of autogamous seeds were determined in a bagging experiment and seed development analysis. After induced autogamy, a high level of fruiting (80-100%) was noted in all of the four study species. C. rubra, N. ovata, and G. conopsea are completely self-compatible, and P. bifolia is suggested to be partially self-compatible. If autogamy occurred, inbreeding depression and resource limitation on seed development appeared only in the two Orchideae species. Independent of flower specialization, both Neottieae species and P. bifolia were completely allogamous, whereas G. conopsea could be facultatively autogamous.
A study of Gentiana cruciata L. (Gentianaceae), Gymnadenia conopsea (L.) R.Br. (Orchidaceae) and Luzula pedemontana Boiss. et Reut. (Juncaceae) showed differences in the number and characteristics of critical stages in ovule and seed development. The shared critical stages explain the general direction of the formation of reproductive structures and surrounding tissues. The taxon-specific critical stages may have different implications in a given species: they may (1) verify that the ovule belongs to a specific type, (2) indicate their lability in different taxa with the same ovule type, or (3) coincide in species with various ovule types.
The metabolites in the ovule come from the receptacle, ovary wall and placenta. They are accumulated in the chalaza and then translocated in reproductive and somatic structures via a system of specialized tissues. The hypostase is of great importance because it lies at the boundary of the chalaza with the nucellus and integuments, and contacts the vascular bundle. In the megagametophyte, the cell walls, which have many outgrowths, receive metabolites from the hypostase via podium and postament tissues. Histochemical data on accumulation of proteins, polysaccharides, lignin and tannins in tissues during ovule and seed development are presented. The dynamics of these substances and the character of metabolism in tissues are suggested as indicators of metabolite flow.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.