Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Gondwana
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The faunal history of insects in the various fragments of Gondwana is presented. The first part of the paper summarizes the current knowledge of its insect-bearing localities, particularly their stratigraphy and fossil content, emphasizing the record of the higher systematic groups. The second part discusses some trends of their palaeobiodiversity as evidenced from the above mentioned sites. Generally, the knowledge of the fossil Gondwanan insect faunae is still much lower than that of the Laurasian ones, but has considerably increased over the last decade. Altogether about 85 localities are known from Gondwana, with a maximum of sites in Permian and a minimum in Jurassic times. Best represented is South America. Fossil insects of Gondwana are probably less known than those of Laurasia due to inadequate exploration rather than unfavourable conditions for the formation of deposits.
2
84%
The study of the strophomenide brachiopods of the subfamily Rafinesquininae present in the main Upper Ordovician sections, representing the Mediterranean margin of Gondwana, has revealed an increase in diversity of the group at the region during that time. The studied collections are from the Moroccan Anti-Atlas, the Iberian and the Armorican massifs, the Iberian Chains, Pyrenees, Montagne Noire, Sardinia, and Bohemia. Two genera of the subfamily Rafinesquininae have been recorded. Of them, the cosmopolitan Rafinesquina is the only one previously reported from the region and Kjaerina is found for the first time outside Avalonia, Baltica, and Laurentia. Additionally, two new subgenera have been described, Kjaerina (Villasina) and Rafinesquina (Mesogeina). Furthermore, the new species Rafinesquina (Mesogeina) gabianensis, Rafinesquina (Mesogeina) loredensis, Kjaerina (Kjaerina) gondwanensis, Kjaerina (Villasina) pedronaensis, Kjaerina (Villasina) pyrenaica, and Kjaerina (Villasina) meloui have been described. In addition, other species of these genera previously known from isolated localities in the region, such as Rafinesquina pseudoloricata, Rafinesquina pomoides, and Hedstroemina almadenensis are revised and their geographic range expanded. The adaptive radiation experienced by the rafinesquinines at the Mediterranean region during middle to late Katian, was probably related to changes in the regime of sedimentation and water temperature caused by the global warming Boda event.
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

A Cretaceous mammal from Tanzania

84%
We report here the discovery of a Cretaceous mammal from the “Red Sandstone Group” of southwestern Tanzania. This specimen is one of only a very few Cretaceous mammals known from Gondwana in general and Africa in particular. The specimen consists of a short, deep left dentary that bore a large, procumbent central incisor, and five single−rooted, hypsodont cheek−teeth. The specimen is very tentatively identified as a sudamericid, and thus may represent the first African record of an enigmatic clade of mammals, the Gondwanatheria, which is otherwise known from the Late Cretaceous and Paleogene of several other Gondwanan landmasses. Unfortunately, the precise age of the specimen could not be determined. If it is pre−Campanian and if its identity as a sudamercid is corroborated through subsequent discoveries, it represents the earliest known gondwanatherian. If the specimen is from the Campanian or Maastrichtian, and again assuming its identification is correct, it has the potential to refute a recently formulated biogeographic hypothesis predicting the absence of certain terrestrial and freshwater vertebrate taxa, including gondwanatherians, in Africa (i.e., those that evolved elsewhere on Gondwana after Africa became an isolated landmass).
A dentary fragment containing a tiny left plagiaulacoid fourth lower premolar from the Early Cretaceous (Aptian) of Victoria provides the first evidence of the Multituberculata from Australia. This unique specimen represents a new genus and species, Corriebaatar marywaltersae, and is placed in a new family, Corriebaataridae. The Australian fossil, together with meagre records of multituberculates from South America, Africa, and Madagascar, reinforces the view that Multituberculata had a cosmopolitan distribution during the Mesozoic, with dispersal into eastern Gondwana probably occurring prior to enforcement of climatic barriers (indicated by marked differentiation in regional floras) in the Early Cretaceous.
A review of the Cambrian edrioasteroid echinoderm Cambraster cannati is made based on new collections from the Iberian Chains (NE Spain) and Montagne Noire (France). New morphological data include a completely articulated oral area and details of ambulacra. Specimens ranging from 4 to 26 mm in diameter provide detailed information concerning the full ontogeny. Important changes through ontogeny mainly affect the marginal ring and the plating pattern of the aboral surface. Comparison with other species of Cambrasterindicates that the aboral surface of Cambraster tastudorum from Australia shows strong resemblance to juvenile specimens of C. cannati. Cambraster cannati was attached directly to the substrate and inhabited relatively high energy, offshore environments from the west margin of Gondwana. Abnormalities in the skeleton are described for the first time in a Cambrian edrioasteroid.
In modern terrestrial ecosystems, the population size of large predators is low, and a similar pattern has usually been assumed for dinosaurs. However, fossil finds of monospecific, large theropod accumulations suggest that population dynamics were more complex. Here, we report two Early Cretaceous tracksites dominated by large theropod footprints, in Querulpa Chico (Peru) and Chacarilla (Chile). The two sites correspond to distinct depositional environments—tidal basin/delta (Querulpa Chico) and meandering river (Chacarilla)—with both subject to extensive arid or semiarid palaeoclimatic conditions. Although most trackways show no preferred orientation, a clear relationship between two trackmakers is observed in one instance. This observation, coupled with the high abundance of trackways belonging to distinct large theropods, and the exclusion of tracks of other animals, suggests some degree of grouping behaviour. The presence of freshwater sources in a dry climate and perhaps social behaviour such as pair bonding may have promoted interactions between large carnivores. Further, the occurrence of these two tracksites confirms that large theropod dinosaurs, possibly spinosaurids and/or carcharodontosaurids, existed on the western margin of Gondwana as early as the earliest Cretaceous.
Abelisaurid theropods were one of the most diverse groups of predatory dinosaurs in Gondwana during the Cretaceous. The group is characterized by a tall, wide skull and robust cervical region. This morphology is thought to have facilitated specialized feeding behaviors such as prolonged contact with prey. The Late Cretaceous abelisaurid Majungasaurus crenatissimus typifies this abelisaurid cranial morphotype. Recent fossil discoveries of this species include a partial growth series that allows for the first time an investigation of ontogenetic variation in cranial morphology in a representative abelisaurid. Herein we examine growth trajectories in the shape of individual cranial bones and articulated skulls of Majungasaurus using geometric morphometrics. Several major changes in skull shape were observed through ontogeny, including an increase in the height of the jugal, postorbital, and quadratojugal, an increase in the extent of the contacts between bones, and a decrease in the circumference of the orbit. The skull transitions from relatively short in the smallest individual to tall and robust in large adults, as is seen in other theropods. Such morphological change during ontogeny would likely have resulted in different biomechanical properties and feeding behaviors between small and large individuals. These findings provide a post-hatching developmental framework for understanding the evolution of the distinctive tall skull morphology seen in abelisaurids and other large-sized theropod dinosaurs.
We describe an additional fragmentary upper molar and the first lower molar known of Monotrematum sudamericanum, the oldest Cenozoic (Paleocene) monotreme. Comparisons suggest that the monotreme evolution passed through a stage in which their molars were “pseudo−triangulate”, without a true trigonid, and that the monotreme pseudo−triangulate pattern did not arise through rotation of the primary molar cusps. Monotreme lower molars lack a talonid, and consequently there is no basin with facets produced by the wearing action of a “protocone”; a cristid obliqua connecting the “talonid“ to the “trigonid” is also absent. We hypothesize that acquisition of the molar pattern seen in Steropodon galmani (Early Cretaceous, Albian) followed a process similar to that already postulated for docodonts (Docodon in Laurasia, Reigitherium in the South American sector of Gondwana) and, probably, in the gondwanathere Ferugliotherium.
Flattened eocrinoids are very rare in the fossil record, notably because of their fragility. Recent investigations in the Anti−Atlas (Morocco) have provided one of the oldest known specimens of Cardiocystites from the Upper Ordovician (early–middle Sandbian). This discovery increases the number of eocrinoid genera known in Morocco. This new material is the fifth published specimen of the genus Cardiocystites. It is well preserved, thus allowing morphological details, such as the location of the anal pyramid and the plane of thecal flattening, to be observed. Palaeoecological reconstruction can be deduced or confirmed from these new details. The respiration of Cardiocystites now seems due to the combination of both epidermal gaseous exchange and cloacal pumping. Stem length and synostosial articulation indicate that the stem might have been used as a mooring line allowing the theca to float in the currents. The flattening of the Cardiocystites theca seems to be an adaptation to high energy hydrodynamic conditions and cold waters. Occurrences of Cardiocystites bohemicusin Morocco, in the early–middle Sandbian, and in Bohemia, in the early Katian, indicate that the genus probably originated in the west Gondwanan margin. Migration could explain the occurrence of Cardiocystites in this area and also in Avalonia in the late Sandbian. The global sea−level rise and the presence of cool water circulation from west Gondwana to Avalonia and Laurentia in the early Sandbian favour such a hypothesis.
A new mammal−bearing locality from the Intertrappean beds (Maastricthian) of Rangapur, Andhra Pradesh, India provides isolated teeth referable to Deccanolestes and a new eutherian, Sahnitherium rangapurensis. Dental comparisons with Cimolestes, Procerberus, and Aboletylestes do not support proposed “palaeoryctoid” affinities for Deccanolestes. Although similarities exist with Otlestes and Batodon, Deccanolestes is currently considered to be of uncertain familial affinities. Sahnitherium rangapurensis exhibits similarities to Procerberus, Paranyctoides, Alostera, Aboletylestes, and Avitotherium, but it is here placed within Eutheria incertae sedis. Despite family level taxonomic uncertainties, the new material confirms the presence of eutherians on the Indian subcontinent during the Late Cretaceous. A Eurasian connection via an early collision or some other dispersal route may explain these paleobiogeographic data, but other hypotheses are considered. In particular, paleogeographic, paleontological, and molecular systematic data hint that boreosphenidan mammals may have had wider distribution on Gondwana during the Cretaceous than previously supported.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.