Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 49

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  DNA methylation
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Most flowering plants, including important crops, require double fertilization to form an embryo and endosperm, which nourishes it. Independence from fertilization is a feature of apomictic plants that produce seeds, from which the plants that are clones of the mother plant arise. The phenomenon of apomixis occurs in some sexual plants under specific circumstances. Since the launch of a fertilization-independent mechanism is considered a useful tool for plant breeding, there have been efforts to artificially induce apomixis. We have been able to produce fertilization-independent endosperm in vitro in Arabidopsis over the last few years. This paper demonstrates the methods of improving the quality of the endosperm obtained using plant and mammalian steroid hormones. Additionally, it shows the study on the autonomous endosperm (AE) formation mechanism in vitro. This paper examines the effect of exogenous steroid hormones on unfertilized egg and central cell divisions in culture of unpollinated pistils of Arabidopsis Col-0 wild-type andfie-1 mutant. All media with hormones used (estrone, androsterone, progesterone, and epibrassinolide) stimulated central cell divisions and fertilization-independent endosperm development. The stages of AE development followed the pattern of Arabidopsis thaliana wild type after fertilization. Subsequent stages of AE were observed from 2-nuclear up to cellular with the most advanced occurring on medium with 24-epibrassinolide and progesterone. The significant influence of mammalian sex hormones on speed of AE development and differentiation was noticed. Using restriction analysis, the changes in methylation of FIE gene was established under in vitro condition. The authors of this paper showed that Arabidopsis thaliana has a high potency to fertilization-independent development.
This study was carried out to determine the effects of novobiocin, a gyrase inhibitor, on the growth, survival, motility and whole cell proteins of S. Typhimurium dam and/or seqA strains. Our results showed that the dam and seqA/dam mutants are the most sensitive to novobiocin, compared to wild type and seqA strains. Surprisingly, the motility of seqA mutants increased after exposure to novobiocin only in stationary phase cells. All the other strains showed a significant decrease in their motility. The analysis of protein profiles of all strains demonstrated several modifications as manifested by the alteration of the expression levels of certain bands. Our work is therefore of great interest in understanding the effects of novobiocin on S. Typhimurium and the involvement of DNA methylation.
DNA methylation is an epigenetic process affecting gene expression and chromatin organization. It can heritably silence or activate transcription of genes without any change in their nucleotide sequences, and for a long time was not recognized as an important regulatory mechanism. However, during the recent years it has been shown that improper methylation, especially hypermethylation of promoter regions, is observed in nearly all steps of tumorigenesis. Aberrant methylation is also the cause of several major pathologies including developmental disorders involving chromosome instabilities and mental retardation. A great progress has been made in our understanding of the enzymatic machinery involved in establishing and maintaining methylation patterns. This allowed for the development of new diagnostic tools and epigenetic treatment therapies. The new approaches hold a great potential; several inhibitors of DNA methyltransferases have already shown very promising therapeutic effects.
Plant genomes are dynamic structures having both the system to maintain and accurately reproduce the information encoded therein and the ability to accept more or less random changes, which is one of the foundations of evolution. Crop improvement and various uncontrolled stress factors can induce unintended genetic and epigenetic variations. In this review it is attempted to summarize factors causing such changes and the molecular nature of these variations in transgenic plants. Unintended effects in transgenic plants can be divided into three main groups: first, pleiotropic effects of integrated DNA on the host plant genome; second, the influence of the integration site and transgene architecture on transgene expression level and stability; and third, the effect of various stresses related to tissue handling, regeneration and clonal propagation. Many of these factors are recently being redefined due to new researches, which apply modern highly sensitive analytical techniques and sequenced model organisms. The ability to inspect large portions of genomes clearly shows that tissue culture contributes to a vast majority of observed genetic and epigenetic changes. Nevertheless, monitoring of thousands transcripts, proteins and metabolites reveals that unintended variation most often falls in the range of natural differences between landraces or varieties. We expect that an increasing amount of evidence on many important crop species will support these observations in the nearest future.
DNA methylation is a potent regulator of gene expression. The influence of beta-carotene (BC) and arachidonic acid (AA) on angiogenesis - a new blood vessel formation, was reported. The tyrosine kinase VEGFR-2 receptor (KDR) activation by vascular endothelial growth factor is one of the main angiogenic mechanisms. This study was aimed to investigate a possible role of CpG island methylation on regulation of the pro-angiogenic KDR gene expression after incubation of human endothelial cells with BC and/or AA. Methods: Human umbilical vein endothelial cells (HUVEC) were incubated with BC (1-10 µM) and/or 3 µM AA for 24 hours. The CpG island methylation was quantified using the COBRA method and restriction enzymes' digestion (NewEngland BioLabs). Intracellular protein concentrations were determined by Western blot analysis using the specific antibodies (Santa Cruz). Results: Incubation with BC and AA, decreased methylation of the KDR promoter region. These results well-correlated with the detected, by qRT-PCR, up-regulation of KDR gene expression by BC (p=0.035) as well as by AA. Incubation with BC (p=0.02) and AA (p=0.0014) increased the KDR protein levels in HUVECs. Conclusion: The changes in CpG island methylation of the KDR the pro-angiogenic gene promoter, represents one of the mechanisms involved in regulation of angiogenic response by BC and AA.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.