Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 107

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 6 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  DNA damage
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 6 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Heterocyclic amines (HCAs) have been shown to be carcinogenic in a variety of experimental systems. The purpose of the present study was to determine the in vitro effect of HCAs on the activity of the DNA repair enzyme poly(ADP-ribose) polymerase-1 (PARP-1). HCAs were also tested on the arginine-specific mono-ADP-ribosyltransferase A (MART-A), an enzyme involved in signal transduction and cytoskeletal realignment. 3-Amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) at 1 mM caused a 134% increase in PARP-1 activity and a 93% decrease in activity at 5 mM (IC50 = 2.2 mM). This dual effect is unique among inhibitors of this enzyme. On the other hand, Trp-P-2 activated MART-A at all concentrations tested, the peak being at 3 mM (>171% increase). In contrast, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) inhibited concentration-dependently both enzymes, PARP-1 (IC50 = 0.22 mM) and MART-A (IC50 = 2.8 mM). With nine other HCAs tested, predominantly inhibitory effects were observed. These results may assist our understanding of the carcinogenic mechanism of action and the dose-dependency of HCAs in animal bioassays.
 Reactions of reactive oxygen species and more specifically - of hydroxyl radical (•OH) - with nucleosides may lead to the generation of radicals in the base and 2-deoxyribose moieties. In the present study emphasis was put on the possible reaction modes of 2'-deoxyadenosine (dA) radicals, leading to the formation of related 5',8-cyclonucleosides. It appears that the prerequisite for the formation of 5',8-cyclo-2'-deoxyadenosine (cdA) is the adoption of O4'-exo conformation by 2-deoxyribose; however, this is the least energetically favored conformer among the different puckered forms adopted by the furanose ring. The O4'-exo conformation was found to be present in each of the discussed mechanisms.
8
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Sperm epigenetic profile and risk of cancer

75%
Introduction and objective. The integrity, stability and composition of sperm chromatin are of great importance in the fertilizing potential of male gametes and their capacity to support normal embryonic development. In this study, the author presents the current state of knowledge about the sperm epigenetic profile and risk of cancer. Abbreviated description of the state of knowledge. The obtaining of pregnancy and the state of health of the baby depends on the quality of the genetic material of both the female and the male. Health behaviours and environmental factors directly affect the quality of sperm, as well as the human egg cell and, consequently, on the reproductive capabilities, the course of pregnancy and the state of the newborn. There exist two thoroughly investigated epigenetic modifications: DNA methylation and histone modifications. The process of DNA methylation can be also a fundamental factor contributing to the development of cancer, where epigenotype undergoes significant modifications. When considering numerous DNA aberrations in the male gamete, the most commonly encountered is DNA fragmentation, particularly in infertile subjects. Surprisingly, an intracytoplasmatic sperm injection study of mice oocytes, using spermatozoa with a high DNA Fragmentation Index (DFI), revealed that a considerable percentage of adults born as a result of this method, showed a significant increase in the incidence of abnormal behavioural tests, malformations, cancer and signs of premature aging. Summary. The issue of assisted procreation raises the need to look for an appropriate treatment for males with sperm chromatin abnormalities. As a result, the fight against smoking addiction becomes the obvious necessity. Moreover, the reasonable solution nowadays seems to be supplementation with micronutrients and folic acid. It has been proved that the process of DNA fragmentation is a phenomenon that intensifies over time. Therefore, there should be a pursuance for, as close as possible, to the moment of ejaculation, application of semen to reproductive techniques. Finally, epigenetic changes are suspected of being one of the factors responsible for the deterioration of male sperm parameters observed in recent decades.
Cadmium (Cd), a potent immunotoxicant, has been reported to affect immunocytes both in humans and in rodents. However, whether such an effect exists in birds is still unclear. To delineate the cytotoxicity of Cd on the bird immunocytes in vitro, chicken splenic lymphocytes were exposed to Cd. A significant increase in the occurrence of cell damage was observed in chicken splenic lymphocytes following Cd administration. The enhanced level of LPO and the overproduction of ROS suggested that Cd caused oxidative stress in chicken splenic lymphocytes. A pronounced inhibition of SOD and GPx was seen after being indicated with 10 μM Cd for 36h or indicated with 15 μM Cd for 24 h. In addition, DNA damage and apoptosis was observed in chicken splenic lymphocytes treated with Cd. The degree of DNA damage and the number of apoptotic cells rose in a time- and dose-dependent manner. These results clearly demonstrate that chicken splenic lymphocytes appear to be more susceptible than mammalian immunocytes to the adverse effects of Cd. The oxidative stress and subsequent DNA damage and apoptosis induced by Cd are important mechanisms of Cd cytotoxicity to bird immunocytes.
This is a short survey of the adaptive mutation processes that arise in non- or slowly- dividing bacterial cells and includes: (i) bacterial models in which adaptive mutations are studied; (ii) the mutagenic lesions from which these mutations derive; (iii) the influence of DNA repair processes on the spectrum of adaptive mutations. It is proposed that in starved cells, likely as during the MFD phenomenon, lesions in tRNA suppressor genes are preferentially repaired and no suppressor tRNAs are formed as a result of adaptive mutations. Perhaps the most provocative proposal is (iv) a hypothesis that the majority of adaptive mutations are selected in a pre-apoptotic state where the cells are either mutated, selected, and survive, or they die.
Poly(ADP-ribose) polymerase (PARP-1) is an abundant nuclear protein with a high affinity for single- and double-strand DNA breaks. Its binding to strand breaks pro­motes catalysis of the covalent modification of nuclear proteins with poly(ADP-ribose) synthesised from NAD+ . PARP-1-knockout cells are extremely sen­sitive to alkylating agents, suggesting the involvement of PARP-1 in base excision re­pair; however, its role remains unclear. We investigated the dependence of base exci­sion repair pathways on PARP-1 and NAD+ using whole cell extracts derived from normal and PARP-1 deficient mouse cells and DNA substrates containing abasic sites. In normal extracts the rate of repair was highly dependent on NAD+ . We found that in the absence of NAD+ repair was slowed down 4-6-fold after incision of the abasic site. We also established that in extracts from PARP-1 deficient mouse cells, repair of both regular and reduced abasic sites was increased with respect to normal extracts and was NAD+ -independent, suggesting that in both short- and long-patch BER PARP-1 slows down, rather than stimulates, the repair reaction. Our data support the pro­posal that PARP-1 does not play a major role in catalysis of DNA damage processing via either base excision repair pathway.
Cell cycle checkpoints are the surveillance mechanisms monitoring both the fidelity and accuracy of DNA replication and the segregation of chromosomes. By delaying progression through the cell cycle, checkpoints provide more time for repair before the critical phases of DNA replication and ensure the proper segregation of chromosomes during mitosis. The paper provides basic information about the molecular mechanisms operating in various cell cycle checkpoints activated by DNA damage or disturbances in mitotic spindle assembly.
Ethyl alcohol can be mutagenic, cancerogenic and teratogenic in man and its mutagenicity can be attributed to its first and major metabolite, acetaldehyde, which was reported to form adducts with DNA and proteins and DNA strand breaks. It was suggested that DNA crosslinks can be predominant DNA adducts of acetaldehyde but these results were obtained with the alkaline elution technique which provides no information on the extent of DNA damage at individual cell level. The comet assay is a technique, which allows detecting double- and single-strand DNA breaks caused by a broad spectrum of mutagens. It is also a suitable tool for the detection of crosslinking agents. Human peripheral blood lymphocytes were incubated for 1 h at 37°C with 3, 10, 30 and 100 mM of acetaldehyde. The alkaline comet assay was used to assess DNA damage. A dose-dependent decrease in the migration of DNA of acetaldehyde-treated cells was observed. Similar results were obtained when a recognized DNA crosslinking agent, formaldehyde was used. The results obtained suggest that acetaldehyde may form crosslinks with DNA in human lymphocytes. The nature of the crosslinks remains unknown and needs further investigations.
Progressive decline in fertility and sperm quality has been reported over the last few decades, especially in industrialized nations. It has been proposed that exposure to factors that induce damage in DNA of spermatogenic cells may significantly contribute to impaired fertility. Here, the 32P-postlabelling method was used to analyze the levels of bulky DNA adducts in sperm cells in a group of 179 volunteers, either healthy subjects or patients with an impaired fertility. The levels of DNA adducts were 1.35-fold higher in the infertile group as compared to healthy individuals (P = 0.012). Similarly, a significant negative correlation between the levels of DNA adducts and measures of semen quality (sperm concentration and motility) has been observed (P < 0.001). In addition, the levels of bulky DNA adducts in sperm cells positively corre­lates with amounts of leukocytes in semen, which were significantly higher in semen of infertile subjects.
Lipid peroxidation is a process involving the oxidation of polyunsaturated fatty acids (PUFAs), which are basic components of biological membranes. Reactive electrophilic compounds are formed during lipid peroxidation, mainly α,β-unsaturated aldehydes. These compounds yield a number of adducts with DNA. Among them, propeno and substituted propano adducts of deoxyguanosine with malondialdehyde (MDA), acrolein, crotonaldehyde and etheno adducts, resulting from the reactions of DNA bases with epoxy aldehydes, are a very important group of adducts. The epoxy aldehydes are more reactive towards DNA than the parent unsaturated aldehydes. The compounds resulting from lipid peroxidation mostly react with DNA showing both genotoxic and mutagenic action; among them, 4-hydroxynonenal is the most genotoxic, while MDA is the most mutagenic. DNA damage caused by the adducts of lipid peroxidation products with DNA can be removed by the repairing action of glycosylases. The formed adducts have been hitherto analyzed using the IPPA (Imunopurification-32P-postlabelling assay) method and via gas chromatography/electron capture negtive chemical ionization/mass spectrometry (GC/EC NCI/MS). A combination of liquid chromatography with electrospray tandem mass spectrometry (LC/ES-MSMS) with labelled inner standard has mainly been used in recent years.
Nickel(II) is reported to be genotoxic, but the mechanisms underlying its genotoxicity are largely unknown. It can interfere with DNA repair and this may contribute to its genotoxicity. We studied the effect of nickel chloride on the repair of DNA damaged by UV radiation or N-methyl-N-nitro-N-nitrosoguanidine (MNNG) in human lymphocytes using the alkaline comet assay. Nickel(II) at 1 μM caused an accumulation of DNA breaks during repair incubation, which could follow from the inhibition of the polymerization/ligation step of UV-damaged DNA repair. On the other hand, nickel(II) inhibited the formation of transient DNA breaks brought by the repair process after incubation with MNNG at 5 μM, which might follow from interference with the recognition/incision step of excision repair. Additionally, nickel at 1 μM inhibited the activity of formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (Alk A), enzymes involved in DNA excision repair. A decrease in endonuclease III (Endo III) activity was observed at 2 and 5 μM of nickel chloride. Our results suggest that nickel(II) at non-cytotoxic concentrations can inhibit various steps of DNA excision repair, and this may contribute to its genotoxicity.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 6 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.