Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Cyclopoida
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Thermocyclops kawamurai Kikuchi, 1940, a poorly-known cyclopoid from northern China is redescribed. Data on variability are given. Proposed synonymy of T. kawamurai Kikuchi, 1940 and Thermocyclops orientalis Dussart et Fernando, 1985 (Defaye et al. 1988) is rejected.
Re-examination of the type-material of Mesocyclops iranicus Lindberg, 1936 revealed that this species has to be considered as a junior synonym of the widely distributed M. aspericornis (Daday, 1906). Some observations on the micromorphology are presented, and a list of the type-materials of the species described from Iran by Lindberg in 1936 and which he deposited in the collections of the Recent Invertebrate Section is given.
A new species of bomolochid copepod Nothobomolochus ilhoikimi sp. n., (Cyclopoida), is described based on adult females collected from the gills of hilsa shad Tenualosa ilisha (Hamilton) (Actinopterygii, Clupeidae) captured in waters off Iraq. The new species differs from its congeners by having the following combination of characters in the adult female: 1) anal somite not spinulate; 2) paragnath blunt and robust; 3) maxilla with slender proximal segment and distal segment with 2 accessory processes terminally; 4) the distal exopodal segment of leg 1 with 3 small spines; and 5) the terminal endopodal segment of leg 4 carrying one long and one short spine. It closely resembles N. triceros (Bassett-Smith, 1898) but prominently differs in above features and also in host specificity. In addition, another bomolochid Orbitacolax hapalogenyos (Yamaguti and Yamasu, 1959) is redescribed based on material collected from Japanese threadfin bream Nemipterus japonicus (Bloch) (Perciformes, Nemipteridae) captured in waters off Iraq. Two species clusters, the hapalogenyos and the analogus groups are recognized in this genus.
The relationships between the small cyclopoid copepod Oithona and hydrological factors, phytoplankton and ichthyoplankton were evaluated using the data obtained in the central South China Sea (SCS) in summer 2014. The genus abundance ranged from 6.00 ind. m3 to 93.75 ind. m3 with high abundance band occurring in the branch of SCS Monsoon Jet. The lower temperature and higher salinity in the surface water of the band than other zones indicated that deep water intrusion was a positive factor for aggregation of the genus. The community structure of the genus was dominated by Oithona plumifera and Oithona similis made up 97% of the genus abundance associated with Oithona tenuis. The result of db-RDA analysis showed that the community structure of the genus was affected by temperature, Chl a, larval fishes and fish spawns, and temperature was the most important limiting factor. The result of GAMs analysis showed that abundance of O. tenuis, and copepodites were affected by Chl a, larval fishes and fish spawns; abundance of O. similis was affected by Chl a and fish spawns; and abundance of O. plumifera was affected by Chl a and larval fishes. Therefore, we suggest that the branch of SCS Monsoon Jet and deep water intrusion favor aggregation of plankton in the central SCS in summer. We confirm that the temperature is the limiting factor to the reproduction of the genus Oithona in tropic seas and the genus Oithona is a food-web linker between primary production and larval fishes in the central SCS.
Paracyclops fimbriatus can be easily cultured as a food source for juvenile fish. The crustacean can be fed protozoans living in sewage sludge and in hay infusions. When properly fed, the cyclopoid densities can be as high as 1000 000 inds/dm3. Methods of culture and harvest of the crustaceans are described. Data on length and biomass of all the 12 developmental stages are reported as well.
Morphological comparisons among three allopatric representatives of the Mesocyclops thermocyclopoides-group - Mesocyclops parentium sp. nov. (southern India, Sri Lanka), Mesocyclops woutersi Van de Velde, 1987 (New-Guinea-Indochina-Ryukyu Is.) and Mesocyclops dissimilis Defaye et Kawabata, 1993 (Honshu, Kyushu Is.) - revealed a very slight degree of divergence, as compared to that of sympatric species of the group. Clear-cut differences in some characters (presence/absence of spinules at base of antero- and posterolateral furcal setae, hair rows on dorsum of pediger 5) do nevertheless indicate genetic discontinuity among the species. The separation of M. dissimilis is also expressed in quantitative traits, some of them (increase of relative length of the apical exopod and baseoendopod setae of leg 5, the dorsal furcal setae and third endopodal segment of leg 4) being very probably adaptations for pelagic life. Mesocyclops guangxiensis Reid et Kay, 1992 is synonymyzed with M. woutersi Van de Velde, 1987, syn. nov. Parsimony, zoogeographical and ecological considerations leave two hypotheses of relationships within the trio likely: either the ancestor of the group was M. parentium-like; or the ancestor was different from all three.
Industrial processes and the use of fertilizers are the main causes for the rapid eutrophication of lakes. Different indices, both chemical and biological, may be used to assess a level and a rate of the eutrophication process. Zooplankton indices can be among them, as zooplankton community structure is determined primarily by the physical and chemical environment and modified by biological interactions, i.e. predation and interspecific competition for food resources. Among biological indices of trophic state of lake, those based on densities and structure of crustacean communities seem to respond weaker. There are, however, patterns of crustacean communities connected with trophic state of lakes. Thus, an increase in trophic state causes: (1) an increase in the total numbers of crustaceans; (2) an increase in the total biomass of Cyclopoida; (3) an increase in the contribution of the biomass of Cyclopidae to the total crustacean biomass; (4) an increase in the ratio of the biomass of Cyclopoida to the biomass of Cladocera; (5) a decrease in the average body weight of Crustacea; (6) an increase in the ratio of Cladocera to Calanoida numbers; (7) an increase in the ratio of Cyclopoida to Calanoida numbers; (8) an increase in the dominance of species indicative of high trophy (Mesocyclops leuckartii, Thermocyclops oithonoides, Diaphanosoma brachyurum, Chydorus sphaericus, Bosmina (Eubosmina) coregoni thersites) in the numbers of all indicative species. Crustacean zooplankton was sampled at the deepest place in a lake at 1 m intervals from the surface to the bottom of epilimnion layer, and then samples were pooled together for the layer. Samples were taken once a year, during the summer stagnation. The material was collected from a total of 41 dimictic and 33 polymictic lakes within Masurian Lake District, Iława Lake District and Lubawa Upland. Among above-mentioned indices, six were the best correlated with trophic state of lakes. Below are formulas which enable to assess trophic state of lakes regardless of their mixis type (TSICR) from parameters of abundance and structure of crustacean communities: (1) TSICR1 = 25.5 N⁰‧¹⁴² (R² = 0.32), where TSI = trophic state index; N = numbers (ind. l⁻¹); (2) TSICR2 = 57.6 B⁰‧⁰⁸¹ (R² = 0.37), where B = biomass (mg w.wt. l⁻¹); (3) TSICR3 = 40.9 CB⁰‧⁰⁹⁷ (R² = 0.35), where CB = percentage of biomass of Cyclopoida in the total biomass of Crustacea (%); (4) TSICR4 = 58.3 (CY/CL)⁰‧⁰⁷¹ (R² = 0.30), where CY/ CL = ratio of the Cyclopoida biomass to the biomass of Cladocera (%); (5) TSICR5 = 5.08 Ln (CY/CA) + 46.6 (R² = 0.37), where CY/CA = ratio of Cyclopoida numbers to the numbers of Calanoida; (the relationship covering exclusively dimictic lakes); (6) TSICR6 = 43.8 e⁰‧⁰⁰⁴ (IHT) (R² = 0.30), where IHT = percentage of species indicative of high trophy in the indicative group’s numbers. It was assumed that the lakes with a TSICR under 45 are mesotrophic, those with a TSICR value of 45–55 are meso-eutrophic, those with a TSICR value of 55–65 – eutrophic and those with a TSICR above 65 – hypertrophic. Although crustacean indices of trophic state of lakes seem to be less useful than other biological indices, they may be recommended in assessing the quality of lake waters.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.