Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 158

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 8 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Cucumis sativus
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 8 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Regeneration of cucumber plants from leaf explants resulted in a new species phenotype designated mosaic (msc). It is characterized by two types of spots on the leaves (zucchini-like and chlorophyllous) and has many altered morphological and physiological properties including slower growth, smaller organs, poorly germinating or empty seeds and a smaller number of flowers per node. In msc plants the shape of the first leaf is always altered, and in about 76% of the flowers the crown is reduced and distorted to a varying degree. Chloroplasts of the zucchini-like sectors are filled with large starch grains, and some of the embryos die at various stages of development. The msc phenotype is transmitted uniparentally only by the male plant and no segregation is observed in the F2 and subsequent generations. Possible mechanisms responsible for the msc phenotype and its transmission are discussed.
Nitrate uptake in right-side out plasma membrane vesicles isolated from cucumber roots was characterized. Nitrate uptake into vesicles was driven by an artificially imposed pH gradient. The uptake was strongly inhibited by phenylglyoxal, an arginyl residue modificator. Only a slight repression of NO⁻₃ transport in vesicles was observed in the presence of NEM, a thiol group reagent. pCMBS, an other thiol reagent and DEPC, an effector of histidine residue, had no effect on the nitrate transport in plasma membranes. ATP-driven proton transport in vesicles was not significantly affected in the presence of both, phenylglyoxal and DEPC, whereas pCMBS and NEM abolished it almost completely. The possible role of the particular amino acids residues in the active nitrate transport is discussed. NO⁻₃ uptake into vesicles isolated from both, nitrate-induced and nitrate-depleted plant material was higher than that observed in the vesicles obtained from uninduced plants. Thus, isolated vesicles reflect the well-known in vivo response of intact plants on the exogenous nitrogen regime.
Cloning using bacterial artificial chromosomes (BACs) can yield high quality genomic libraries, which are used for the physical mapping, identification and isolation of genes, and for gene sequencing. A BAC genomic library was constructed from high molecular weight DNA (HMW DNA) obtained from nuclei of the cucumber (Cucumis sativus L. cv. Borszczagowski; B10 line). The DNA was digested with the HindIII restriction enzyme and ligated into the pCC1BAC vector. The library consists of 34,560 BAC clones with an average insert size of 135 kb, and 12.7x genome coverage. Screening the library for chloroplast and mitochondrial DNA content indicated an exceptionally low 0.26% contamination with chloroplast DNA and 0.3% with mitochondrial DNA.
The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 8 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.