Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Aspergillus nidulans
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Arginase (EC 3.5.3.1) of Aspergillus nidulans, the enzyme which enables the fungus to use arginine as the sole nitrogen source was purified to homogeneity. Molecular mass of the purified arginase subunit is 40 kDa and is similar to that reported for the Neurospora crussa (38.3 kDa) and Saccharomyces cerevisiae (39 kDa) enzymes. The native molecular mass of arginase is 125 kDa. The subunit/nati ve molecular mass ratio suggests a trimeric form of the protein. The arginase protein was cleaved and partially sequenced. Two out of the six polypeptides sequenced show a high degree of homology to conserved domains in arginases from other species.
We have estimated the number of 5S rRNA genes in Aspergillus nidulans using two-dimensional agarose gel electrophoresis and hybridization to appropriate probes, representing the 5'-halves, the 3'-halves of the 5S rRNA sequence and a sequence found at the 3'-end of all known A. nidulans pseudogenes (block C). We have found 23 5S rRNA genes, 15 pseudogenes consisting of the 5'-half of the 5S rRNA sequence (of which 3 are flanked by block C) and 12 copies of block C which do not seem to be in the vicinity of 5S rRNA sequences. This number of genes is much lower than our earlier estimates, and makes our previously analyzed sample of 9 sequenced genes and 3 pseudogenes much more representative.
O-acetylhomoserine sulfhydrylase (OAH SHLase) from Aspergillus nidulans is an oligomeric protein with a broad substrate specificity with regard to sulfhydryl compounds. As its Saccharomyces cerevisiae counterpart the enzyme also reacts with O-acetylserine and is inhibited by carbonyl reagents but not by antiserum raised against the yeast enzyme. In contrast to Saccharomyces cerevisiae the enzyme is not essential for Aspergillus nidulans as indicated by the completely prototrophic phenotype of OAH SHLase-negative mutants. Its major physiological role in Aspergillus nidulans seems to be recycling of the thiomethyl group of methylthio- adenosine but it is also a constituent of the alternative pathway of cysteine synthesis.
Genetic manipulation of the filamentous fungus Penicillium camemberti has been limited by a lack of suitable genetics tools for this fungus. In particular, there is no available homologous transformation system. In this study, the nitrate reductase (niaD) and orotidine-5′-monophosphate decarboxylase (pyrG) genes from Penicillium camemberti were characterized, and their suitability as metabolic molecular markers for transformation was evaluated. The genes were amplified using PCR-related techniques, and sequenced. The niaD gene is flanked by the nitrite reductase (niiA) gene in a divergent arrangement, being part of the putative nitrate assimilation cluster in P. camemberti. pyrG presents several polymorphisms compared with a previously sequenced pyrG gene from another P. camemberti strain, but almost all are silent mutations. Southern blot assays indicate that one copy of each gene is present in P. camemberti. Northern blot assays showed that the pyrG gene is expressed in minimal and rich media, and the niaD gene is expressed in nitrate, but not in reduced nitrogen sources. The functionality of the two genes as transformation markers was established by transforming A. nidulans pyrG- and niaD-deficient strains. Higher transformation efficiencies were obtained with a pyrG-containing plasmid. This is the first study yielding a molecular and functional characterization of P. camemberti genes that would be useful as molecular markers for transformation, opening the way for the future development of a non-antibiotic genetic transformation system for this fungus.
The arginase structural gene (agaA) from Aspergillus nidulans has been cloned and characterised. Depending on the growth conditions of the mycelium, transcripts of this gene have different 5'ends. These differences could result either from the presence of multiple transcription initiation sites or from differential processing of mRNA. The agaA mRNA has a long 5'UTR with a potentially complex secondary structure. Putative arginine binding aptamers were found in this UTR suggesting interesting possibilities for regulation of the agaA expression.
O-glycosylation has been considered a limiting factor in protein secretion in filamentous fungi. Overexpression of the yeast DPM1 gene encoding dolichylphosphate mannose synthase (DPMS) in an Aspergillus nidulans mutant (BWB26A) deficient in O-glycosylation caused an increase in the number of secretory vesicles and changes in protein secretion. However, the secretory proteins, primarily O-mannosylated glucoamylase and N-glycosylated invertase, were mainly trapped in the periplasmic space. Different glycoforms of invertase were found insite the cells, in the periplasmic space and in the cultivation medium. Our data point to the importance of the cell wall as a barrier in protein secretion.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.