Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 109

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 6 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Alzheimer's disease
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 6 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Protein glycation is initiated by a nucleophilic addition reaction between the free amino group from a protein, lipid or nucleic acid and the carbonyl group of a reducing sugar. This reaction forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or Amadori products. The Amadori products undergo dehydration and rearrangements and develop a cross-link between adjacent proteins, giving rise to protein aggregation or advanced glycation end products (AGEs). A number of studies have shown that glycation induces the formation of the β-sheet structure in β-amyloid protein, α-synuclein, transthyretin (TTR), copper-zinc superoxide dismutase 1 (Cu, Zn-SOD-1), and prion protein. Aggregation of the β-sheet structure in each case creates fibrillar structures, respectively causing Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, familial amyloid polyneuropathy, and prion disease. It has been suggested that oligomeric species of glycated α-synuclein and prion are more toxic than fibrils. This review focuses on the pathway of AGE formation, the synthesis of different types of AGE, and the molecular mechanisms by which glycation causes various types of neurodegenerative disease. It discusses several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors. Modulation of the AGE-RAGE axis is now considered promising in the prevention of neurodegenerative diseases. Additionally, the review covers several defense enzymes and proteins in the human body that are important anti-glycating systems acting to prevent the development of neurodegenerative diseases.
Background. In case of many individuals, decrease of body mass is observed during aging, that is often in elderly living in nursing homes. It is especially important for patients with Alzheimer’s disease (AD), when decrease of body mass, resulting in malnutrition. Objective. The aim of the study was the assessment of the quality of diet of AD individuals living at homes and in nursing homes, in comparison with a control group Material and methods. In the study participated 160 individuals with and without AD, living at home or in nursing homes. Assessment of diet of individuals living at homes was based on self-reported data from one-day dietary recall. Assessment of diet of individuals living in nursing homes was based on one-day menu from nursing homes accompanied by information about snacking between meals. The diets were assessed on the basis of qualitative meal classification method of Bielińska and Kulesza. Results. Individuals living in nursing homes consumed meals more often than living at homes, while AD did not have any impact on it. Individuals consuming fruits and vegetables not often enough were in all the groups, however, in case of individuals living at homes it was serious problem. Consuming animal products to almost all main meals was observed in case of many individuals in all analyzed groups. Composition of majority of main meals and small amount of lunches and afternoon snacks was rational. Conclusions. Improperly balanced diet following observed not only in a group of AD individuals but also of ones without dementia (both living at homes and in nursing homes), may result in dietary deficiencies.
Microglial cells, through the proinflammatory mediators play an important role in host defense and tissue repair in CNS. They contribute to pathomechanisms of Alzheimer’s and other neurodegenerative diseases. The aim of this work was to investigate modifying effects of non-activated migroglia on cholinergic neuronal SN56 cells subjected to common neuroprotective and/or neurotoxic signals. Chronic exposure to Zn or SNP caused loss of viability (30%), inhibition of pyruvate dehydrogenase (PDH) (40%), isocitrate dehydrogenase (60 and 50%) and aconitase activities as well as decrease of acetyl-CoA levels. These alterations in enzyme activities displayed strong direct correlation with depletion of acetylCoA (r=0.86, P<0.0001) and inverse correlation with cell viability (r=0.87, P<0.0001). Resveratrol, free radical scavenger, increased viability of Zn/SNP treated cholinergic cells but did not overcome suppresive effects of SNP and Zn on enzymes activities. Under same neurotoxic conditions, N9 microglial cells cultured on isoporated inserts and added to neuronal culture dishes, also overcame neurotoxic effect Zn and SNP maintaining control levels of acetyl-CoA, enzymes activites and high cell viability. These data sugest that in some specific, pathologic conditions, non-activated microglia may protect neuronal cholinergic neurons against neurotoxic insults by paracrine-like mechanism by protecting their energy metabolism. On the other hand resveratrol neuroprotection may depend on entirely different yet undefined mechanism. Supported by GUMed MN-15, MNiSW NN401029937, IP2010035370, GUMed ST-57 projects.
Lately, different therapy strategies for treating or slowing the progression of Alzheimer's disease are being analyzed. Moreover, the last two decades have seen a considerable research effort directed towards discovering the causes of Alzheimer's disease with the ultimate hope of developing safe and effective pharmacological treatments. In addition to the therapeutic strategies based on targeted drugs, the regimens will require the simultaneous application of neuroprotective drugs. Therefore, although there is currently no "cure" for Alzheimer's disease, a large number of potential therapeutic strategies emerged lately. In this small mini-review we will selectively describe some of the compounds derived from plants that could have a great potential in the treatment of various diseases, including Alzheimer's disease. In this way, there are many plant species that have been traditionally used for memory disorders. The differentiated results and powerful activity of these extracts are making these neuroprotective strategies to be somehow plausible for the treatment of Alzheimer's disease. In addition, these plants can be examined in order to isolate and identify their active ingredients and this can serve as a starting point to find safer and more effective agents for therapeutic use. On thing is certain: as the effective treatment options are limited, there is a demand for new drugs. Thus, plant extracts or vegetal compounds could represent an important part in this equation.
Numerous results on membrane lipid composition from different regions of autopsied Alzheimer's disease brains in comparison with corresponding fractions isolated from control brains revealed significant differences in serine- and ethanolamine-containing glycerophospholipid as well as in glycosphingolipid content. Changes in membrane lipid composition are frequently accompanied by alterations in membrane fluidity, hydrophobic mismatch, lipid signaling pathways, transient formation and disappearance of lipid microdomains, changes in membrane permeability to cations and variations of other membrane properties. In this review we focus on possible implications of altered membrane composition on b-amyloid precursor protein (APP) and on proteolysis of APP leading eventually to the formation of neurotoxic b-amyloid (Ab) peptides, the major proteinaceous component of extracellular senile plaques, directly involved in Alzheimer's disease pathogenesis.
Aggregation of Aβ peptides is a seminal event in Alzheimer’s disease. Detailed understanding of Aβ assembly would facilitate the targeting and design of fibrillogenesis inhibitors. Here comparative conformational and aggregation studies using CD spectroscopy and thioflavine T fluorescence assay are presented. As a model peptide, the 11–28 fragment of Aβ was used. This model peptide is known to contain the core region responsible for Aβ aggregation. The structural and aggregational behaviour of the peptide was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21-23 (A21G, E22K, E22G, E22Q and D23N). In HFIP (hexafluoro-2-propanol), a strong α-helix inducer, the CD spectra revealed an unexpectedly high amount of β-sheet conformation. The aggregation process of Aβ(11–28) variants provoked by water addition to HFIP was found to be consistent with a model of an α-helix-containing intermediate. The aggregation propensity of all Aβ(11–28) variants was also compared and discussed.
ß-Secretase, a ß-site amyloid precursor protein (APP) cleaving enzyme (BACE), par­ticipates in the secretion of ß-amyloid peptides (Aß), the major components of the toxic amyloid plaques found in the brains of patients with Alzheimer's disease (AD). According to the amyloid hypothesis, accumulation of Aß is the primary influence driving AD pathogenesis. Lowering of Aß secretion can be achieved by decreasing BACE activity rather than by down-regulation of the APP substrate protein. There­fore, ß-secretase is a primary target for anti-amyloid therapeutic drug design. Se­veral approaches have been undertaken to find an effective inhibitor of human ß-secretase activity, mostly in the field of peptidomimetic, non-cleavable substrate analogues. This review describes strategies targeting BACE mRNA recognition and its down-regulation based on the antisense action of small inhibitory nucleic acids (siNAs). These include antisense oligonucleotides, catalytic nucleic acids — ribo­zymes and deoxyribozymes — as well as small interfering RNAs (siRNAs). While antisense oligonucleotides were first used to identify an aspartyl protease with S-secretase activity, all the strategies now demonstrate that siNAs are able to inhibit BACE gene expression in a sequence-specific manner, measured both at the level of its mRNA and at the level of protein. Moreover, knock-down of BACE reduces the intra- and extracellular population of Aß40 and Aß42 peptides. An anti-amyloid effect of siNAs is observed in a wide spectrum of cell lines as well as in primary cortical neurons. Thus targeting BACE with small inhibitory nucleic acids may be beneficial for the treatment of Alzheimer’s disease and for future drug design.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 6 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.