Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The reductive removal of hexavalent chromium Cr⁶⁺ by iron slag from aqueous solutions was investigated. Iron slag was treated with a grinding miller and washed thoroughly. The redox reaction of iron slag onto the chromium Cr⁶⁺ was initiated by Fenton’s reagent (Fe²⁺/H₂O₂). The optimum conditions for adsorption of Cr⁶⁺ were found to be as follows: pH 3; photocatalyst dose 0.13 g/L; COD 400 mg/L; Cl⁻ concentration 5 mg/L; matrix was gravel and construction waste and contact; reaction time was 270 min. In addition, the action mechanism of each factor in the wastewater was analyzed. In the reaction system, pH was the main influencing factor. When the pH was 3, the reduced rate of Cr⁶⁺ could reach 99%. High salinity had a certain effect on Cr⁶⁺ reduction. When the Cl⁻ concentration was more than 6 mg/L, Cr⁶⁺ reduction rate was below 90%. Owing to high efficiency and low cost, iron slag could be used as an effective catalyst for Cr⁶⁺ removal from wastewater.
In the present study, (NH₄)₂S₂O₃ extraction methods were applied to assess bioaccumulation of methylmercury (MeHg) in rice grains, and inorganic mercury (IHg) concentrations in rice leaves were analyzed during the rice growing time to access the bioaccumulation of IHg in rice leaves. The results show that the IHg concentrations in leaves increased in the rice harvest stage, indicating that the limit or no IHg was migrated to the rice grain. Also, the Hg-contaminated leaves may potentially cause the input of ‘new Hg’ into soil, leading to a vicious Hg pollution cycle in a rice paddy system. Our results indicated that MeHg concentrations in leaves could not be used to predict the MeHg bioaccumulation in rice grain. Meanwhile, MeHg transferred capability from soil to leaves decreased with time, which could be the common effect of the decreased soil MeHg bioavailability and translocation of MeHg from leaves to rice grains.
Background: Osteosarcoma (OS) is a common malignant tumor that predominantly occurs in adolescents. Its most common metastasis is to the lungs. As shown in our earlier study, lysosome-associated membrane glycoprotein 3 (LAMP3) is highly upregulated in metastatic OS. However, its role in the regulation of OS cell viability and apoptosis remains unknown. Methods: We knocked down and overexpressed LAMP3 in OS cells and assessed the cell viability and apoptosis. Then, we investigated the expression of apoptosisassociated genes to identify the downstream gene(s) of LAMP3. Results: Knockdown of LAMP3 significantly inhibited OS cell viability and promoted apoptosis. TP53, which is involved in the apoptosis pathway, was found to be highly upregulated after knockdown of LAMP3. Overexpression of LAMP3 significantly increased cell viability and abrogated apoptosis. Importantly, subsequent knockdown of TP53 partially suppressed the increased OS cell apoptosis induced by the inhibition of LAMP3, suggesting that TP53 is a key functional downstream gene of LAMP3. Conclusions: Our findings suggest that LAMP3 promotes OS cell viability and survival by regulating TP53 expression.
Cricocosmia jinningensis, one of the most abundant palaeoscolecid worms from the Lower Cambrian Chengjiang deposits of south China, was originally described as bearing double longitudinal rows of lateral conical sclerites on the trunk. New observation reveals that the ventral trunk bears an additional set of ventral sclerites while the lateral sclerites display a tubercle−bearing (inner surface) and net−like (outer surface) microstructure similar to that of Tabelliscolex hexagonus. These findings mean that: (1) Cricocosmia shows a dorso−ventral and antero−posterior differentiation in trunk ornament; (2) as seen from the microstructure, Cricocosmia is close to Tabelliscolex hexagonus, supporting the idea that lobopodians and arthropods, both of which show an upper capping layer in the outer sclerites, are more closely related than the palaeoscolecidans; and (3) the similarities among the scalids, pharyngeal teeth and the trunk spines of palaeoscolecidans are superficial. Tabelliscolex maanshanensis sp. nov., characterized by an inner concentric circlet of laminae in each tubercle of the lateral trunk plate, is proposed herein. Element mapping reveal that four known pathways of preservation can be found co−occurring in a single specimen of Cricocosmia or Tabelliscolex, which sheds new light on the preservation of the Chengjiang fossils.
The organization of the lophophore and the digestive system are recognized as two of the diagnostic characters in the definition of higher brachiopod taxa, and hence play a major role in their phylogenetic analysis, their structure, however, is very rarely fossilized. Here we describe and interpret specimens of the brachiopod Lingulellotreta malongensis, from the Lower Cambrian Chengjiang Lagerstätte (South China), one of the earliest known taxa of the Lingulellotretidae, in which lophophores and intact, U−shaped digestive tracts are extraordinarily well−preserved. The lophophore, with clearly preserved tentacles, corresponds to an early spirolophe developmental stage. The digestive tract consists of a mouth, esophagus, distended stomach, intestine and an anterior anus, and differs from that of the Chengjiang obolid Lingulella chengjiangensis by the presence of the dilated stomach and by the absence of a looped intestine as in Lingula. In addition, the relative sizes of the mantle and visceral cavities of Lingulellotreta malongensis also are described. These fossils demonstrate that by the Atdabanian brachiopods had already possessed advanced features, and suggest that a lophophore and a U−shaped intestine with an anterior anus are brachiopod plesiomorphies.
A large lobopod, Jianshanopodia decora gen. et sp. nov., with body length (excluding appendages) about 220 mm from the Lower Cambrian Haikou section, near Kunming, Yunnan, southwest China, shows a mixture of characters, including features of the lobopod Xenusion Pompeckj, 1927, e.g., a large cylindrical body with annulations, stout and strong lobopod appendages each bearing bases of serial tubercles, and of Aysheaia Walcott, 1911, i.e., a pair of large frontal appendages. This suggests that the new genus might be a connecting link between Xenusion and Aysheaia. Besides, Jianshanopodia shares some features with the Early Cambrian stem group arthropod Pambdelurion Budd, 1997, and Kerygmachela Budd, 1993, e.g., the pairs of mid−gut diverticula, the possible presence of tail fan, the mouth cone, the frontal pharyngeal structures and the pharynax are surrounded by the bases of the large frontal appendages. However, compared with a series of segmentally arranged, imbricating, paddle−shaped, movable lateral flaps of both Pambdelurion and Kerygmachela, Jianshanopodia possesses distinct complex appendages with tree−like or lamellate branches. The discovery of this rare transitional form not only throws new light on the early diversification of lobopods, and may also have significance with respect to the origin of arthropods.
Onychodictyon ferox, from the Lower Cambrian Chengjiang Lagerstätte, is a worm−like armored lobopod with 10 pairs of dorsal plates and a pair of probable sensory appendages (“antennae”). Newly discovered complete specimens show that Onychodictyon is represented by two species: O. ferox with a “head” bearing a pair of dorsal “antennae” and a trunk with 11 pairs of limbs, whereas O. gracilis has a blunt anterior end without any appendages and a trunk with 12 pairs of limbs. Because of the close resemblance of the “antennae” of O. ferox and those of the lobopod Miraluolishania, they are considered to be homologous structures. The “antennae” of Cambrian lobopodians are proposed to be homologous with the arthropod antennulae.
To shed light on the relationship between sucrose metabolism and expression of genes related to sucrose-metabolizing enzymes, six genes encoding sucrose-metabolizing enzymes were isolated, and the levels of four main carbohydrates and related enzyme activities as well as the expression of these six genes were determined in fruits, leaves and phloem-enriched fraction throughout peach fruit development. Sucrose content in mature fruit ranked first followed by glucose, fructose and sorbitol in that order, while sorbitol was the highest and sucrose lowest in phloem-enriched fraction and leaves. Glucose and fructose had similar change patterns throughout fruit development. Cloning results reveal that the nucleotide sequences of the six genes have high similarity to corresponding genes isolated from other plants. In addition, the expression of these genes and the levels of related enzyme activities varied with tissue and stage of fruit development, suggesting a complexity in relationships between carbohydrates, enzymes activities and related gene expression. Sucrose phosphate synthase maybe a key enzyme involved in sucrose synthesis while sucrose synthase may mainly be responsible for sucrose synthesis in peach fruits at later stages of development. Further studies are needed to genetically and physiologically characterize these genes and enzymes in peach and to gain a better understanding of their functions and relationship with carbohydrate metabolism.
Applying the genomic library construction process and colony screening, a novel aroA gene encoding 5-enopyruvylshikimate-3-phosphate synthase from Proteus mirabilis was identified and isolated. Furthermore, the transgenic Arabidopsis with the novel aroA gene was obtained to confirm the potential of the novel aroA gene in developing glyphosate-resistant crops.
Fruit skin coloration is a unique phase in the life cycle of fruiting plants and is mainly attributed to anthocyanin pigments. Anthocyanins are the largest and most diverse group of plant pigments derived from the phenyl propanoid pathway. They are water-soluble phenolic compounds that form part of a large and common group of plant flavonoids. Coloration encompasses several physiological and biochemical changes that happen through differential expression of various developmentally regulated genes. Due to research importance and economic value, Arabidopsis thaliana (chromosome no. = 5) and Vitis vinifera (chromosome no. = 19) have been used for investigations of the structural genes involved in anthocyanin biosynthesis. Thus for this review, V. vinifera is used as a model crop. In anthocyanin biosynthesis, a wide range of constructive genes including phenylalanine ammonia lyase, chalcone synthase and anthocyanidin synthase that are regulated by MYB transcription factors are involved. These genes are coordinately expressed and their levels of expression are positively related to the anthocyanin concentrations. Expression or suppression of the constructive genes contributes to a variety of changes that make fruits visually attractive and edible. Transgenic approaches also have discovered a strong relationship between phenyl propanoid/flavonoid gene expressions for fruit skin coloration. In this study, various developments that have taken place in the last decade with respect to identifying and altering the function of color-related genes are described.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.