Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 83

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 5 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 5 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This article introduces the operating principle of the wave energy device and makes AMEsim simulated analysis in the influence of the amplitude and period of the wave on the output efficient. By using the result of the simulation to optimize design, the article puts forwards a kind of suitable control technology which based on the disclosed amplitude and period of the wave to control the check valve, invoking the motor in different levels of efficiency. This kind of technology aims to solve the problem which includes low efficiency and high start wave of the wave energy device. The result is verified by the physical experiment, which lays the foundation for the implementation of marine engineering. The established methods of simulation model and analysis results are expected to be useful to designing and manufacturing of wave energy converter
Background: Patients with anti-β2GPI antibodies display significantly higher platelet activation/aggregation and vascular endothelial cell damage. The mechanism underlying the correlation between platelet activation, vascular endothelial cell dysfunctions and anti-β2GPI antibodies remains unknown. Methods: In this study, we derived miR-96 and -26a from platelets activated by the antiβ2GPI/β2GPI complex and explored their role in modulating human umbilical vein endothelial cell (HUVEC) migration and tube formation. Results: Anti-β2GPI/β2GPI complex induces the release of platelet-derived microparticles (p-MPs). The amounts of miR-96 and -26a in these p-MPs were also higher than for the control group. Co-incubation of HUVECs with p-MPs resulted in the transfer of miR96 and -26a into HUVECs, where they inhibited migration and tube formation. The targeting role of these miRNAs was further validated by directly downregulating targeted selectin-P (SELP) and platelet-derived growth factor receptor alpha (PDGFRA) via luciferase activity assay. Conclusion: Our study suggests that miR-96 and -26a in p-MPs can inhibit HUVEC behavior by targeting SELP and PDGFRA.
A 3-D thermal discharge numerical model based on the Navier-Stokes equation, the k–ε turbulence model, and the temperature diffusion-controlled equation was developed to simulate the 3-D distribution of thermal discharge along a river-type reservoir under different discharge conditions, hydrological conditions and reservoir water levels. Results showed that the thermal discharge from the power plant would have a smaller effect on a deep-water reservoir. Neither 1ºC, 2ºC nor 3ºC isotherm appear in any scenario conditions. For dam water depths of 155 m and 175 m, a small envelope area of 0.05ºC isothermal line was predicted. The isothermal lines of 0.05ºC and 0.1ºC covered a small area in all scenario conditions. The temperature increase 500 m downstream of the discharge point was predicted to be less than 0.05ºC during dry seasons. The predicted stability time of the temperature increase in each layer was 20 days. It evidences the thermal impact intensity and the extent is different under three scenario conditions. The predicted space–time distribution of the cooling water and the temperature increase provide scientific bases for designing water intake and water management. In the future, the influence of thermal discharge on water quality and aquatic organisms of the reservoir will be discussed based on the simulation results of this study, that is, the variation law of water temperature caused by thermal discharge.
Non-point source (NPS) pollution contributes greatly to the contamination of surface water quality and has aroused widespread concerns. NPS pollution is influenced by a multitude of site-related factors whose effects are complicated. We estimated NPS pollution with a soil and water assessment tool (SWAT) model in China’s Fan River watershed. A new method, boosted regression tree (BRT), was proposed to study the relationship of impact factors on NPS pollution. We analyzed the effects of elevation, land use, soil, and slope on the patterns of sediment transport, total nitrogen (TN), and total phosphorus (TP). The results showed that R² values were higher than 0.76, and NSE was higher than 0.67. The SWAT model can estimate NPS pollution effectively in a study area. Although the spatial pattern of sediment and TP was quite consistent, the relationship between sediment and TN was weak. The contribution of impact factors for sediment TN and TP were different. Slope is the most important impact factor for sediment and TP load. Land use is the most important impact factor for TN load. The BRT model can reduce barriers to factor complexity and promote understanding of the NPS pollution formation mechanism. We proposed control strategies of pollution sources, and our research has proven to be useful for the explanation of impact factors in NPS pollution study, which is meaningful for NPS pollution control.
High-resolution wind series in the southern Baltic Sea for the period of 1958–2007 are analysed to generate representative climate input conditions for a multi-scale morphodynamic model to simulate decadal-to-centennial coastline change. Four seasonal wind classes, each characterized by a predominant distribution of wind direction and speed, are derived from statistical analysis. Further calibration of this statistical description is done by sensitivity studies of the model to generate similar coastline changes of the Darss-Zingst peninsula as the measured data for the last century. The coastline change of this area is then projected for the next 300 years based on four different climate scenarios, through which impacts of accelerated sea level rise and storm frequency on the long-term coastline change are quantified.
The production of sewage sludge has been sharply increasing by municipal sludge treatment plants in China. Sewage sludge is a difficult waste to manage not only due to the high quantities produced but also due to its high concentration of heavy metals and pathogens. The pyrolytic conversion of sewage sludge to biochar and then applied to the land is a sustainable management potion. Therefore, the aim of this work is to evaluate the characteristics of nutrients and heavy metals in biochar from sewage sludge pyrolysis, and pot experiments were carried out with different treatments consisting of infertile and contaminated soils. The results showed that the content of major plant nutrients (N, P, K) in sewage sludge biochar meets agricultural requirements. The concentrations of heavy metals (Cu, Pb, Zn, Cd, and Cr) were evidently increased in biochar, but those of available heavy metals were decreased. The sewage sludge biochar can improve soil fertility and enhance plant growth while not increasing plant uptake of heavy metals, and remedied contaminated soil by reducing the plant availability of heavy metals.
Study of the radial growth response to climate factors at different tree ages is essential for predicting forest dynamics and formulating correct management policies. In this study, we analysed the growth responsiveness of Picea crassifolia to climate conditions, and evaluated its relationship to tree age at the individual tree scale, in the transitional zone between regions affected by the East Asian monsoon and winds blowing from the west (westerlies) in the Qilian Mountains. On three study sites, 150 cores were taken from 75 trees. Pearson correlation coefficients were calculated between the standardized tree-ring series of each core (and chronology) and climatic factors which were utilized to research the climate-growth relationships. Quadratic polynomial fitting was used to test the relationships between tree age, chronological parameters, and the radial growth response to climate. Radial growth was positively influenced by total precipitation for the previous July-September and the current May-July. Additionally, radial growth was negatively correlated with the total monthly precipitation for the current September, and the mean monthly temperature for the previous July. Trees younger than 80 years old showed a stronger response to accumulative precipitation in the previous July-September, those older than 160 years old showed a stronger response to precipitation at the end of current growing season, while those of 140–160 years old showed a weaker response to precipitation in the current May-July.
Whether and why the biomass–density (M–N) scaling relationship varies along environmental gradients were continuously debated in theoretical ecology. In this study, how soil salinity stress affects on the M–N scaling relationship was investigated by using Suaeda salsa L. in beach of Dongtai, Jiangsu Province, China. The results showed that the exponent of the scaling relationship (b) of low salinity level (-1.259) was smaller than that of middle salinity level (-1.025), which in turn was smaller than that high salinity level (-0.698). The plant height–crown radius (H–r) scaling exponents (ϭ) decreased with increasing salinity stress, while the canopy coverage–density (C–N) scaling exponents (β) showed an inverse trend. The predict data (b) based on ϭ and β by using the geometric model were statistically indistinguishable from their observed values for the three salinity levels. Moreover, two resources utilization parameters (l mean from root to leaf, a total area of leaves) of metabolic theory, photosynthetic rate, and water-use efficiency were more advantageous to Suaeda salsa L. of high stress than to those of low salinity. Therefore, it was implied that the changes of M–N relationship along salinity gradients may be resulted from their different geometric morphologies and resource utilization in response to salinity stress.
Sewage sludge was cross-linked with epichlorohydrin to increase its mechanical strength and applicability as an absorbent material. We investigated the effect of the conditions of the cross-linking reaction on the mechanical strength and Cu (II) adsorption capacity of epichlorohydrin cross-linking sewage sludge (ECS). Experimental results showed that cross-linking can raise signifi cantly the mechanical strength of sewage sludge. To improve the adsorption capacity of ECS, carboxymethyl cross-linked sewage sludge (CCS) with maximal adsorption capacity (65mg/g) for Cu (II) was synthesized from ECS by using chloroacetic acid as the etherifi cation agent. The experimental results showed that the adsorption properties of CCS for Cu (II) could best be described by the pseudo-second order model and Langmuir model, and the adsorption mechanism was ion exchange. Our data suggest that CCS is a promising absorbent for removal of heavy metals from wastewater.
The capacity of plants to occupy different habitats is made possible by the plastic responses of their presenting in heterogeneous habitats. Light directly influences the plastic responses of plant architectural traits. We measured five years-old saplings of Chinese cork oak growing in different light intensity habitats (forest edge, forest gap and understory). A suite of architectural and leaf morphological attributes indicated a pronounced ability of Chinese cork oak to adapt to shade. Under low light intensity habitats, Chinese cork oak had a significant tendency to invest more in crown growth, characterized by the highest crown area, the lowest crown length ratio and the largest angle of the inclination of the main stem to the vertical. It expressed marked plagiotropic growth in shade indicating a horizontal light-foraging strategy. In addition, Chinese cork oak significantly exhibited the highest specific leaf area and the lowest total leaf area under low light intensity habitats. In shade, they showed some plasticity in displaying most of their leaf area at the top of the crown to minimize self-shading and to enhance light interception. This differentiation can be defined as a plastic phenomenon, likely related to the higher efficiency of light interception and absorption by saplings.
In this study, we described two new species of the genus Amynthas with one pair of spermathecal pores in segment 8/9 from the riparian forest in Mt. Dinghu and two new Metaphire species with two pairs of spermathecal pores in segment 6/7-7/8 from a coniferous forest and an evergreen broadleaf forest in the Dadingshan station of the Nanling National Natural Reserve, Guangdong, China. The former two Amynthas species appear to be closely related to A. antefixus (Gates, 1935), Sichuan, China. However, A. dirighumontis is much smaller, and its slightly convex ellipse-shaped male porophores are in XVIII or XVII about 0.17-0.25 body circumferences ventrally apart. In addition, there is always a slight twist at about midway of the spermathecal duct from where the slender, twisted diverticulum passed into. Finally, there are no genital markings or papillae in male pore and spermathecal pore regions, instead of the presence of a median, presetal genital marking at the midventral line on segments III, IV and V as in A. antefixus. As to Amynthas liaoi sp. nov., it is characterized by the constant presence of two horizontal rows of three to eight presetal and postsetal papillae in segment XVIII, and one horizontal row of about five postsetal papillae in segment IX. The ampulla shape and size are also different between this new species and A. antefixus. The two Metaphire species are M. nanlingmontis sp. nov. and M. dadingmontis sp. nov. M. nanlingmontis sp. nov. appears to be related to M. jianfengensis (Quan, 1985). They have the same spermathecal pore number and position, and similar male pore cop- ulatory chambers. However, M. nanlingmontis is much smaller in body size than M. jianfengensis. In addition, there is a special ring-like swelling at the border between the duct and the chamber in the spermathecal diverticulum, and a mushroom-like accessory gland present beside the duct. M. dadingmontis sp. nov. appears to be closely related to M. nanlingmontis sp. nov. However, it is also easy to distinguish them from their different diverticulum shape and accessory genital glands in prostatic region. A comparison among the 10 similar Metaphire species with two pairs of spermathecae in VII and VIII has been made.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 5 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.