Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
To date, antibiotics have been the primary drugs used in the treatment of anthrax infections. However, their effectiveness is questionable, especially during the phase of intensive toxin production in the course of infection, and the number of drug-resistant strains continues to rise. Successful treatment of anthrax infection is therefore becoming more difficult. The article discusses some of the new methods of inhibiting anthrax infections: the inhibition of spore germination and of the attachment of PA to the host cell receptor, the inhibition of the enzymatic process of cleaving PA into PA63 and PA20, and of PA63 oligomerization, endocytosis and translocation (their influence on the protection of macrophages against lysis was also discussed). In addition, the neutralization of B. anthracis LeTx and EdTx toxins was presented as another potential method of inhibiting anthrax infections.
Brucellae are Gram-negative, small rods infecting mammals and capable of causing disease called brucellosis. The infection results in abortion and sterility in domestic animals (sheeps, pigs, rams etc). Especially dangerous for humans are: Brucella melitensis, Brucella suis, Brucella abortus, and Brucella canis that trigger unspecific symptoms (flu-like manifestation). Brucella rods are introduced via host cells, by inhalation, skin abrasions, ingestion or mucosal membranes. The most important feature of Brucella is the ability to survive and multiply within both phagocytic and non-phagocytic cells. Brucella does not produce classical virulence factors: exotoxin, cytolisins, exoenzymes, plasmids, fimbria, and drug resistant forms. Major virulence factors are: lipopolysaccharide (LPS), T4SS secretion system and BvrR/BvrS system, which allow interaction with host cell surface, formation of an early, late BCV (Brucella Containing Vacuole) and interaction with endoplasmic reticulum (ER) when the bacteria multiply. The treatment of brucellosis is based on two-drug therapy, the most common combinations of antibiotics are: doxycycline with rifampicin or fluoroquinolones with rifampicin. Currently, also other methods are used to disrupt Brucella intracellular replication (tauroursodeoxycholic acid or ginseng saponin fraction A).
This work presents results of the research on the occurrence of Coxiella burnetii and Francisella tularensis in the tissues of wild-living animals and ticks collected from Drawsko County, West Pomeranian Voivodeship. The real-time PCR testing for the pathogens comprised 928 samples of animal internal organs and 1551 ticks. The presence of C. burnetii was detected in 3% of wild-living animals and in 0.45–3.45% (dependent on collection areas) of ticks. The genetic sequences of F. tularensis were present in 0.49 % of ticks (only in one location – Drawa) and were not detected in animal tissues. The results indicate respectively low proportion of animals and ticks infected with C. burnetii and F. tularensis.
6
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Q fever - selected issues

76%
Q fever is an infectious disease of humans and animals caused by Gram-negative coccobacillus Coxiella burnetii, belonging to the Legionellales order, Coxiellaceae family. The presented study compares selected features of the bacteria genome, including chromosome and plasmids QpH1, QpRS, QpDG and QpDV. The pathomechanism of infection – starting from internalization of the bacteria to its release from infected cell are thoroughly described. The drugs of choice for the treatment of acute Q fever are tetracyclines, macrolides and quinolones. Some other antimicrobials are also active against C. burnetii, namely, telitromycines and tigecyclines (glicylcycline). Q-VAX vaccine induces strong and long-term immunity in humans. Coxevac vaccine for goat and sheep can reduce the number of infections and abortions, as well as decrease the environmental transmission of the pathogen. Using the microarrays technique, about 50 proteins has been identified which could be used in the future for the production of vaccine against Q fever. The routine method of C. burnetii culture is proliferation within cell lines; however, an artificial culture medium has recently been developed. The growth of bacteria in a reduced oxygen (2.5%) atmosphere was obtained after just 6 days. In serology, using the IF method as positive titers, the IgM antibody level >1:64 and IgG antibody level >1:256 (against II phase antigens) has been considered. In molecular diagnostics of C. burnetii infection, the most frequently used method is PCR and its modifications; namely, nested PCR and real time PCR which detect target sequences, such as htpAB and IS1111, chromosome genes (com1), genes specific for different types of plasmids and transposase genes. Although Q fever was diagnosed in Poland in 1956, the data about the occurrence of the disease are incomplete. Comprehensive studies on the current status of Q fever in Poland, with special focus on pathogen reservoirs and vectors, the sources of infection and molecular characteristics of bacteria should be conducted.
Repetitive element polymorphism-PCR (REP-PCR) is one of the tools that has been used to elucidate genetic diversity of related microorganisms. Using the MB1 primer, REP-PCR fingerprints from 110 Bacillus strains within the "B.cereus group" have identified eighteen distinct categories, while other more distantly related bacterial species fell within six additional categories. All Bacillus anthracis strains tested were found to be monomorphic by fluorophore-enhanced REP-PCR (FERP) fingerprinting using the MB1 primer. In contrast, other non- B.anthracis isolates displayed a high degree of polymorphism. Dendrogramic analysis revealed that the non- B.anthracis strains possessing the Ba813 chromosomal marker were divided into two clusters. One of the clusters shared identity with the B.cereus strains examined.
Work in Hospital Emergency Departments (HEDs) exposes both the emergency ward staff and patients to infectious and in other way harmful biological agents. The results of this study shows the presence of pathogenic bacteria isolated by three different methods. It revealed 9.8% of pathogens detected by imprint method, 10.5% of pathogens by swabbing method, 17.6% and 22% in HEDs corridors and rooms, respectively, by air sampling method. In control workplaces (offices) pathogenic bacteria reached the level of 6.5% and 14.7% by imprint method and swabbing, respectively. The relatively low level of contamination by bacteria in HEDs may depend on the effectiveness of Standard Protective Precautions in the studied hospitals.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.