Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Chelant-induced phytoextraction is considered an ideal remedial technique for removing heavy metals from contaminated soils. However, it can increase the risk of adverse environmental effects due to increased metal mobilization and the persistence of both chelants and metal-chelant complexes for extended periods of time. This paper reviews the mechanism, potential risks, and optimization of chelant-induced phytoextraction of toxic metals from contaminated soils. The advantages and major drawbacks of phytoextraction, along with possible strategies to reducing the risks associated with chelant application, are reviewed. Moreover, the directions for future research on chelant-assisted phytoextraction are briefly discussed. The objective of this paper was to comprehensively review chelant-assisted phytoextraction, and it will provide an effective and safe remediation technology for heavy metal-contaminated soils.
As sessile organisms, plants usually experience several stresses simultaneously. It was shown that stress cross-tolerance may be induced by different stressors, including biotic factors as well as heavy metal, hypoxia, ultraviolet-B radiation, heat, high salt, drought, and cold stresses. However, it is unclear whether there is a cross-tolerance toward cold and lead (Pb) stresses in Arabidopsis. In this study, we showed that cold pretreatment enhanced Pb(II) resistance in Arabidopsis, as indicated by lower reduction of root length, fresh weight, and chlorophyll content in the cold-treated plants than the control ones. In the cold-treated seedlings, lower Pb contents were detected in roots and shoots in comparison to the control. This was associated, at least in part, with the activation of the expression of AtPDR12 gene, a pump excluding Pb(II) and/ or Pb(II)-containing toxic compounds from the cytoplasm to the exterior of the cell. This finding was further supported by genetic evidence showing that cold treatment was unable to enhance resistance of atpdr12 mutant to Pb(II) stress but could enhance Pb(II) resistance of the wild type. In addition, we also found that cold-induced enhanced Pb(II) resistance was glutathione-independent. Taken together, all these results suggest that cold treatment enhanced Pb(II) resistance in Arabidopsis, at least in part, by activating the expression of AtPDR12 gene.
Potassium (K+) is an essential element for plant growth and development. Under low-K+ stress, Arabidopsis (Arabidopsis thaliana) plants show K+-deficient symptoms, typically leaf chlorosis and subsequent inhibition of plant growth and development. The nonprotein amino acid b-amino-butyric acid (BABA) has been shown to have roles in protecting Arabidopsis against various pathogens as well as drought, high salinity, and cadmium stresses; However, little is known about the role of BABA in protecting Arabidopsis against low-K+ stress. Here, we showed that BABA protects Arabidopsis against low-K+ stress by increasing K+ uptake under low-K+ condition. Leaf chlorosis of plants subjected to low-K+ stress was abolished by BABA pretreatment, as indicated by a lower reduction in chlorophyll content in BABA-treated plants than watertreated plants. Low-K+ stress-induced decreases in both lateral root length and the numbers of lateral roots were improved by BABA pretreatment. In addition, under low-K+ stress, a significantly higher K+ concentration was detected in BABA-pretreated plants than in watertreated plants, and the transcript levels of AtHAK5 and LKS1 genes involved in K+ uptake in BABA-treated plants were higher than those of water-treated plants. Taken together, our results suggest that BABA plays a role in enhancing low-K+ stress tolerance by increasing K+ uptake, at least in part, via modulation of AtHAK5 and LKS1 under low-K+ condition.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.