Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The study aimed to check the effectiveness of anticancer therapy combining a vascular-disruptive drug (combretastatin phosphate, CA4P) and a liposomal formulation of a chemotherapeutic (doxorubicin). CA4P was synthesized in our laboratory according to a previously described procedure. The antivascular drug and long-circulating doxorubicin-loaded liposomes were used to treat B16-F10 murine melanoma experimental tumors. Seventy-four hours after drug administration, a decrease in the number of tumor blood vessels was apparent and necrotic areas within tumors were visible. Combination therapy consisting of alternate administrations of CA4P and liposomal doxorubicin yielded greater inhibition of tumor growth than monotherapies alone. The best therapeutic results were obtained with the antivascular drug administered intratumorally every second day at 50 mg/kg body mass. In the case of combined therapy, the best results were obtained when the vascular-disruptive agent (CA4P) and the antineoplastic agent (liposomal doxorubicin) were administered in alternation.
We investigated suppression of murine B16(F10) melanoma tumor growth following a therapy which involved concomitant administration of cyclophosphamide and plasmid DNA bearing interleukin-12 gene. Since both therapeutic factors display antiangiogenic capabilities, we assumed that their use in blocking the formation of new blood vessels would result in augmented inhibition of tumor growth. This combined therapy regimen indeed resulted in a considerable suppression of tumor growth. We observed a statistically significant extension of treated animals' lifespan. Interestingly, the therapeutic effect was also obtained using a plasmid without an interleukin gene insert. This observation suggests that plasmid DNA, which has been widely applied for treating neoplastic tumors, contains element(s) that elicit immune response in mice.
Neoplastic cells which co-form tumors are usually subjected to various stress factors, mainly hypoxia and shortage of nutrient factors. Such cells employ different strategies that permit their survival under such conditions. Experiments in vitro are usually carried out in the presence of 21% oxygen and medium supplemented with 10% FBS. Altering these parameters can approximate the in vivo conditions found within tumor mass. The present paper reports certain properties (especially ability to metastasize) of B16-F10 cells able to grow upon exposure to altered growth conditions (medium supplemented with 0.06% FBS or presence of 1% oxygen for 24 or 72 hours). These properties were compared with those of control cells cultured in the presence of 21% oxygen and in medium supplemented with 10% FBS. Some properties of the cells exposed to medium supplemented with 0.06% FBS differ from those of cells cultured under low oxygenation conditions (ability to form metastases, to migrate, or to express various proteins). Only the partial deprivation of oxygen did increase both the number of migrating cells and the number of metastases formed. Serum deficiency enhanced only the cell ability to metastasize, but not to migrate. It appears that cultured B16-F10 cells employ different adaptation strategies under conditions of oxygen shortage and those of serum deficiency. Under oxygen deprivation, such cells most likely undergo an epithelial-mesenchymal transition, whereas serum deficiency ("starvation"), while increasing the tumorigenicity of B16-F10 cells, does not induce the epithelial-mesenchymal transition.
One of the preconditions of effective anticancer therapy is efficient transfer of the therapeutic agent (chemotherapeutic) to tumor cells. Fundamental barriers making drug delivery and action difficult include underoxygenation, elevated interstitial pressure, poor and abnormal tumor blood vascular network and acidic tumor milieu. In this study we aimed at developing an optimized scheme of administering a combination of an angiogenesis-inhibiting drug (vasostatin) and a chemotherapeutic (cyclophosphamide) in the therapeutic treatment of mice bearing experimental B16-F10 melanoma tumors. We report that the strongest tumor growth inhibition was observed in mice that received two, three or four vasostatin doses in combination with one injection of cyclophosphamide (i.e., V2 + CTX, V3 + CTX or V4 + CTX schemes). Double administration of vasostatin increases oxygenation of B16-F10 tumors. On the other hand, its five-fold administration lowers tumor oxygenation, breaks down tumor vascular network (increasing hypoxia) and leads in consequence to death of cancer cells and appearance of necrotic areas in the tumor. A decreased cyclophosphamide dose in combination with two doses of vasostatin (V2 + CTX scheme) inhibits tumor growth similarly to a larger dose of cyclophosphamide alone.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.