Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The paper covers basics of the vortex model used for propeller-stator systems. The outline of the design algorithm is given and the results of its application are shown. The designed propeller-stator system was the subject of model tests run at the CTO model basin and cavitation tunnel. Stator’s influence on the delivered power required by the propeller and its revolution rate has been examined by conducting self-propulsion tests with and without stator. The tests performed in the cavitation tunnel revealed only weak tip vortex cavitation on the propeller. No cavitation was observed on the stator at the design point. A wide range of the performed tests allowed the authors to identify details of the developed theory which will require further improvement
The paper presents the summary of results of the numerical analysis of the unsteady propeller performance in the non-uniform ship wake modified by the different wake improvement devices. This analysis is performed using the lifting surface program DUNCAN for unsteady propeller analysis. The object of the analysis is a 7000 ton chemical tanker, for which four different types of the wake improvement devices have been designed: two vortex generators, a pre-swirl stator, and a boundary layer alignment device. These produced five different cases of the ship wake structure: the original hull and hull equipped alternatively with four wake improvement devices. Two different propellers were analyzed in these five wake fields, one being the original reference propeller P0 and the other - a specially designed, optimized propeller P3. The analyzed parameters were the pictures of unsteady cavitation on propeller blades, harmonics of pressure pulses generated by the cavitating propellers in the selected points and the fluctuating bearing forces on the propeller shaft. Some of the calculated cavitation phenomena were confronted with the experimental. The objective of the calculations was to demonstrate the differences in the calculated unsteady propeller performance resulting from the application of different wake improvement devices. The analysis and discussion of the results, together with the appropriate conclusions, are included in the paper
The article presents the results of experimental and numerical investigation of propeller scale effects, undertaken in co-operation of the Hamburg Ship Model Basin (HSVA), Germany, and Ship Design and Research Centre (CTO SA), Poland. The objective of the investigation was to test the adequacy of the methods currently used to account for the propeller scale effect and to develop possible improvement of the methods. HSVA has conducted model experiments in the large cavitation tunnel together with panel method and CFD calculations. CTO SA has performed model experiments in the towing tank, together with lifting surface and CFD calculations. Both institutions have suggested different new approaches to the problem and different new procedures to account for the propeller scale effects. In the article the procedures are presented together with the description of the underlying experimental and theoretical research
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.