Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The earliest Cambrian Meishucunian phosphoritic succession in eastern Yunnan,China,contains well−preserved molluscan shells that offer insights into the early evolution of skeletonization. Phosphate internal moulds,phosphate replaced originally carbonate shells,and phosphate coatings show lamello−fibrillar structure,prismatic structure,and regularly foliated structure. The lamello−fibrillar structure appears earlier in the fossil record than laminar structures such as nacreous or foliated structures. It has been identified in fossil mollusks,which occur in China as early as the lower phosphate layer of the Zhongyicun Member of the Meishucunian. Therefore,the lamello−fibrillar structure appears to be primitive in mollusks. The lamello−fibrillar and prismatic aragonite is the most common shell material of molluscan skeletons in the Early Cambrian Meishucunian and equivalents around the world. Although the early molluscan microstructure is not so diverse as that of extant mollusks,it may be of use in high rank taxonomic classification as shown by the early conchiferan mollusks discussed here. These mollusks are characterized by the horizontal fibrillae that are layered and parallel,and thereby differ from hyoliths,in which the horizontal fibrillae appear to be in the form of the bundles of fibres that can branch or anastomose.
Carbon productivity is a special indicator that coordinates economic development and climate resource protection. Similar to carbon productivity, electricity carbon productivity (ECP) is defined and researched in our paper since it is an effective way for China’s power industry to realize the low-carbon development path. In this work we have applied the multi-dimensional decomposition method to ECP time series decomposition in order to explore the contributions of technological improvement and structure adjustment for each industrial sector from the final electricity aspect. Moreover, the time-dependent changes of ECP for the period of 2000-14 are researched considering the effects of accumulated technological improvement and structure adjustment. According to the decomposition results, a roadmap for raising carbon productivity by reducing emissions with a minimal impact on electricity demand is provided.
The effects of the growing season climatic factors (i.e., temperature, precipitation, vapor pressure and relative humidity) on the growing season maximum normalized difference vegetation index (MNDVI), which can mirror the aboveground net primary production and the vegetation maximum absorbed ability of photosynthetically active radiation, were examined during the period from 2000 to 2012 on the Tibetan Plateau. The effects of climatic factors on the MNDVI changed with vegetation types, which was probably due to the fact that the changes of climatic factors differed with the type of vegetation. There was a significant increasing trend for the spatially averaged MNDVI of the vegetation area over the entire plateau. Approximately 16 and 3% of the vegetation area demonstrated a significant MNDVI increasing and decreasing trend, respectively. The MNDVI was significantly affected by relative humidity and vapor pressure, but not affected by temperature and precipitation over the entire plateau. Our findings suggested that the environmental humidity played a predominant role in affecting the variation of MNDVI over the entire Tibetan Plateau.
In recent years, oil spill accidents have become increasingly frequent due to the development of marine transportation and massive oil exploitation. At present, satellite remote sensing is the principal method used to monitor oil spills. Extracting the locations and extent of oil spill spots accurately in remote sensing images reaps significant benefits in terms of risk assessment and clean-up work. Nowadays the method of edge detection combined with threshold segmenta- tion (EDCTS) to extract oil information is becoming increasingly popular. However, the current method has some limitations in terms of accurately extracting oil spills in synthetic aperture radar (SAR) images, where heterogeneous background noise exists. In this study, we propose an adaptive mechanism based on Otsu method, which applies region growing combined with both edge detection and threshold segmentation (RGEDOM) to extract oil spills. Remote sensing images from the Bohai Sea on June 11, 2011 and the Gulf of Dalian on July 17, 2010 are utilized to validate the accuracy of our algorithm and the reliability of extraction results. In addition, results according to EDCTS are used as a comparator to further explore validity. The comparison with results according to EDCTS using the same dataset demonstrates that the proposed self-adapting algorithm is more robust and boasts high-accuracy. The accuracy computing by the adaptive algorithm is significantly improved compared with EDCTS and threshold method.
During shortcut biological nitrogen removal in a polluted river, total nitrogen, ammonia nitrogen and nitrite nitrogen were quantified by near infrared spectroscopy and the synergy interval partial least squares (siPLS) algorithm. Spectral data of 138 water samples were obtained with a near infrared spectrometer. In addition, the real values of total nitrogen, ammonia nitrogen and nitrite nitrogen were measured with traditional chemical methods. SiPLS analysis models of total nitrogen, ammonia nitrogen and nitrite nitrogen were built through the siPLS algorithm based on spectral data and realvalues. The results obtained from the siPLS analysis model of total nitrogen revealed that, when the full spectra were divided into 19 intervals, the combination of the 7th, 12th and 19th subintervals yielded the best model. The correction coefficient (Rp) is 0.9931, with the root mean squared error of calibration (RMSECV) being 1.7869. The results obtained from the siPLS analysis model of ammonia nitrogen indicated that, when the full spectra were divided into 16 intervals, the combination of the 1st, 7th, 15th and 16th subintervals yielded the best model. The Rp is 0.9947 and the RMSECV is 1.3419. For nitrite nitrogen, the siPLS analysis model indicated that, when the full spectra were divided into 16 intervals, the combination of the 7th and the 11th subintervals yielded the best model. The Rp and RMSECV was 0.9951 and 1.0518. These findings demonstrated that the proposed approach may effectively analyze the concentrations of total nitrogen, ammonia nitrogen and nitrite nitrogen during the treatment of a polluted river based on shortcut biological nitrogen removal. This approach,which is based on near infrared spectroscopy, is fast and accurate for the detection of different types of nitrogen in water.
The general impact of extra nitrogen on ecological stoichiometry was examined in alpine grasslands on the Tibetan Plateau. Extra nitrogen increased the ratio of nitrogen to phosphorus (N:P ratio) in leaves and aboveground parts of plants by 43.4% and 32.7%, respectively. In contrast, extra nitrogen reduced the ratio of carbon to nitrogen (C:N ratio) in leaves by 30.6%. Extra nitrogen decreased soil C:N ratio by 9.1% in alpine meadows, but increased soil C:N ratio by 3.4% in alpine steppes. Extra urea had a stronger positive impact on aboveground vegetation N:P ratio than did extra ammonium nitrate. Extra urea rather than ammonium nitrate decreased aboveground vegetation C:N ratio and soil C:N ratio. The impact of extra nitrogen on aboveground vegetation N:P ratio was positively correlated with latitude, mean annual temperature and precipitation, nitrogen application rate and accumulated amount, but negatively correlated with elevation, duration and aboveground vegetation N:P ratio of the control plots. The impact of extra nitrogen on leaves N:P ratio was positively correlated with nitrogen application rate and accumulated amount. The impact of extra nitrogen on leaves C:N ratio was positively correlated with latitude, but negatively correlated with mean annual temperature and precipitation, nitrogen application rate, accumulated amount, duration and leaves C:N ratio of the control plots. Therefore, nitrogen enrichment caused by human activities will most likely alter element balance and alpine plants from nitrogen limitation to phosphorus limitation. This effect may weaken with time, and increase with climatic warming, increased precipitation and nitrogen input rate.
A warming experiment with two magnitudes was performed in an alpine meadow of Northern Tibet since late June, 2013. Open top chambers (OTCs) with two top diameters (0.60 m and 1.00 m) were used to increase soil temperature. Soil respiration (Rs) was measured during the growing season in 2013–2014. The OTCs with top diameters of 1.00 m and 0.60 m increased soil temperature by 1.30 and 3.10oC, respectively, during the whole study period, but decreased soil moisture by 0.02 and 0.05 m³ m⁻³, respectively. However, the two patters of OTCs did not affect Rs. These results implied that a higher warming did not result in a higher Rs but a greater soil drying. Therefore, a higher warming may not cause a higher soil respiration, which was most likely due to the fact that a higher warming may result in a greater soil drying.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.