Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 25

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The purpose objective of this study was to investigate the inf luence of finite element meshing accuracy on modal analysis which is one of the basic factors affecting the accuracy of finite element analysis and mostly preoccupies the working staff in pre-processing finite element simulation models. In this paper, we established several finite element models of a welding machine for offshore platform, with the meshing accuracy as the variable and workbench software as the platform for modal analysis, as the same time, comparing the analysis results. The results indicated that for some specific structures and simulation types, mesh refinement alone does not achieve desired results, and the authors indicate that mesh refinement is rarely related to the equipment’s low-frequency modal analysis but it’s great related to the equipment’s high-frequency modal analysis. The findings of this study may serve as breaking the opinion that smaller mesh size means higher calculation precision and provides references for mesh division practices in low frequency modal analysis
Negative energy balance (NEB) is a common pathological cause of ketosis. As the major organs of lipid metabolism, the liver and fat tissue take part in regulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast Growth Factor 21 (FGF21) is a novel metabolic regulator involved in the control of fatty acid oxidation and lipid metabolism during a prolonged negative energy balance. Our study determined a correlation between serum FGF21 and β-hydroxybutyric acid (BHBA) levels in dairy cows with ketosis. We used sixty cows with low milk yield, abnormal glucose metabolism, and ketosis. Serum FGF21 and BHBA levels were measured using commercial kits. Serum FGF21 increased with increasing BHBA levels up to 1.6 mmol/L. At BHBA levels > 1.6 mmol/L, FGF21 decreased. Serum FGF21 levels were positively associated with BHBA levels, particularly in dairy cows with subclinical ketosis (r = 0.647, P < 0.01). At BHBA levels between 1.2 mmol/L and 1.6 mmol/L, FGF21 was more closely correlated with BHBA than with other metabolic parameters. At BHBA levels > 1.6 mmol/L, the association between FGF21 and BHBA was not significant. In conclusion, our results show that FGF21 was closely related with SK in cows. FGF21 may be a promising regulator in the prevention of subclinical ketosis.
Coastline is one type of valuable non-renewable resources. From the perspective of economic theory, it can gather population, promote traffic construction, and then improve the level of international trade. The research object of this paper is the coastline resource in Dafeng area. Firstly, we have a brief summary of the existing coastline evaluation literature, then introduce the location and natural attributes of the coastline resources in Dafeng. Following that, the Analytic Hierarchy Process (AHP) model is used to build the economic evaluation index system based on the characteristics of coastline in Dafeng. Specially, this index system consists of 6 factors, and a total of 41 detailed indicators were chosen including water depth, GDP, etc. On this basis, we use the assignment method to quantify the weight of each index, and calculate the comprehensive score of coastline resource by using the YAAHP software. The final conclusion is as follows: The total score of economic evaluation of coastline resource in Dafeng is 0.87. Therefore, the coastline resource in Dafeng will eventually be constructed a unique coastal economic zone, where the implemented port industrial projects will include shipbuilding, logistics, mechanical processing etc
The aluminum (Al) tolerance of saffron (Crocus sativus L.) in hydroponics and the method of improving Al tolerance were investigated. Compared with the Al-free control, saffron root elongation was decreased by 59.3 and 75% at 0.05 and 0.2 mM Al stress, respectively. At 0.5 mM Al stress, the root elongation was inhibited completely. Addition of 1 mM polyamines improved saffron root growth markedly at 0.2 mM Al stress. Putrescine (Put) showed better amelioration effect than spermidine (Spd) and spermine (Spm). The root elongation in Put treatment was only 15% lower than that of Al-free control. The alleviation of Al rhizotoxicity by polyamines might be attributed to lower Al content in the root tips, and subsequent less lipid peroxidation and oxidative stress. Higher ctivities of amine oxidases and Hydrogen peroxide (H2O2) content might decrease the effects of Spd and Spm on alleviating oxidative damage compared with that of Put.
To explore the role of the integrin signaling pathway in hepatocytes during rat liver regeneration, the integrin signaling pathway-related gene expression profile in hepatocytes of regenerative liver was detected using Rat Genome 230 2.0 array. The chip data showed that 265 genes of the integrin signaling pathway were included by Rat Genome 230 2.0 array and 132 genes showed significant expression changes in hepatocytes of regenerative liver. The numbers of up-, down- and up/down-regulated genes were 110, 15 and 7 respectively. In addition, bioinformatics and systems biology methods were used to analyze the role of the integrin signaling pathway in hepatocytes. The analysis of gene synergy value indicated that paths 1, 8, 12, and 15 promoted hepatocyte proliferation at the priming phase of liver regeneration; paths 1, 3, 8, and 12–15 enhanced hepatocyte proliferation at the progressing phase; paths 11 and 14 promoted hepatocyte proliferation, while paths 12 and 13 reduced hepatocyte proliferation at the terminal phase. Additionally, the other 8 paths (2, 4, 5–7, 9–10, and 16) were not found to be related to liver regeneration. In conclusion, 132 genes and 8 cascades of the integrin signaling pathway participated in regulating hepatocyte proliferation during rat liver regeneration.
Under normal physiological conditions, the majority of hepatocytes are in the functional state (G0 phase). After injury or liver partial hepatectomy (PH), hepatocytes are rapidly activated to divide. To understand the mechanism underlying hepatocyte G0/G1 transition during rat liver regeneration, we used the Rat Genome 230 2.0 Array to determine the expression changes of genes, then searched the GO and NCBI databases for genes associated with the G0/G1 transition, and QIAGEN and KEGG databases for the G0/G1 transition signaling pathways. We used expression profile function (E t ) to calculate the activity level of the known G0/G1 transition signal pathways, and Ingenuity Pathway Analysis 9.0 (IPA) to determine the interactions among these signaling pathways. The results of our study show that the activity of the signaling pathways of HGF, IL-10 mediated by p38MAPK, IL-6 mediated by STAT3, and JAK/STAT mediated by Ras/ERK and STAT3 are significantly increased during the priming phase (2–6 h after PH) of rat liver regeneration. This leads us to conclude that during rat liver regeneration, the HGF, IL-10, IL-6 and JAK/STAT signaling pathways play a major role in promoting hepatocyte G0/G1 transition in the regenerating liver.
Erythropoietin (EPO) has a beneficial effect on hepatic cell proliferation during liver regeneration. However, the underlying mechanism has not yet been elucidated. To uncover the proliferation response of EPO in rat liver regeneration after partial hepatectomy (PH) at the cellular level, hepatocytes (HCs) were isolated using Percoll density gradient centrifugation. The genes of the EPO-mediated signaling pathway and the target genes of the transcription factor (TF) in the pathway were identified in a pathway and TF database search. Their expression profiles were then detected using Rat Genome 230 2.0 Microarray. The results indicated that the EPO-mediated signaling pathway is involved in 19 paths and that 124 genes participate, of which 32 showed significant changes and could be identified as liver regeneration-related genes. In addition, 443 targets regulated by the TFs of the pathway and 60 genes associated with cell proliferation were contained in the array. Subsequently, the synergetic effect of these genes in liver regeneration was analyzed using the E(t) mathematical model based on their expression profiles. The results demonstrated that the E(t) values of paths 3, 8, 12 and 14–17 were significantly strengthened in the progressing phase of liver regeneration through the RAS/MEK/ERK or PI3K/AκT pathways. The synergetic effect of the target genes, in parallel with target-related cell proliferation, was also enhanced 12–72 h after PH, suggesting a potential positive effect of EPO on HC proliferation during rat liver regeneration. These data imply that the EPO receptor may allow EPO to promote HC proliferation through paths 3, 8, 12 and 14–17, mediating the RAS/MEK/ERK and PI3K/AκT pathways in rat liver regeneration after PH.
Negative energy balance (NEB) is a common pathological foundation of fatty liver and ketosis. Liver and fat tissue are the major organs of lipid metabolism, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast growth factor-21 (FGF-21) is a protein hormone that plays an important role in adipose lipid metabolism and liver gluconeogenesis. Our aim was to investigate the effects of exogenous FGF-21 on characteristic parameters related to energy balance in dairy cows. Ten non-pregnant, non-lactating Holstein-Friesian dairy cows were randomly allocated into two groups. The interventions were exogenous FGF-21 injection group received 1 ug/kg BW (body weight) of recombinant bovine FGF-21 by intravenous injection, and control group received physiological saline injections by intravenous injection. In comparison to saline injections, intravenous injections of FGF-21 either increased or tended to increase concentrations of FGF-21 (p < 0.05), BHBA (p < 0.05), adiponectin, leptin and HDL-C. FGF-21 injections decreased or tended to decrease concentrations of insulin, glucose, glucagon (p < 0.05), ALT/GPT (p < 0.05), AST/GOT (p < 0.05), urate, creatinine (p < 0.05), BUN, triglyceride (p < 0.05), T-CHO and LDL-C (p < 0.05). The results indicate that FGF-21 has only negative effects on the metabolites and metabolic hormones related to NEB in serum of dairy cows, but it has more beneficial effects on prominent adipokines, liver function index, renal function index, lipoprotein profiles related to the pathological changes that occurred in NEB.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.