Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
DNA methylation, especially cytosine methylation, is known to play an important role in various developmental processes and defense mechanisms in plants and other organisms. The level and pattern of cytosine methylation are determined by both DNA methylation and demethylation machineries. DNA methylation is known to be established and maintained by DNA methyltransferases, whereas active DNA demethylation is performed by DNA glycosylases. In our previous study, the expression of methylatransferases in cell cultures of Vitis amurensis was studied. The purpose of the present work was to analyze demethylase (Dem) gene expression in the control (V2) and transformed with rolB gene (VB2) from Agrobacterium rhizogenes cell cultures of V. amurensis under the influence of 5-azacytidine (azaC) induced DNA demethylation and treatment with salicylic acid (SA), a plant stress phytohormone. The lowest total Dem expression was detected in the V. amurensis calli of the control V2 cell culture without treatment, while higher Dem expression was detected in the leaves of the 8-year-old V. amurensis plant. Treatment with azaC and SA significantly increased total Dem expression in the V. amurensis V2 and VB2 cell cultures 1.4–3.2 times. Using frequency analysis of reverse transcriptase PCR products obtained with degenerate primers and real-time PCR we analyzed expression of the three Dem transcripts: VaDem1, VaDem2, and VaDem3. The deduced amino acid sequence of VaDem1 is highly homologous to the V. vinifera Ros1-like gene (XM_002277365), VaDem2 to the VvDML3-like (XM_002270849); VaDem3 to the VvDemeter-like (XM_002267274). In the cDNA of the V. amurensis cell cultures the VaDem1 transcripts were more abundant than the VaDem2 and VaDem3 transcripts. Addition of azaC and SA significantly increased the VaDem1 and VaDem2 expression. The results indicate that the VaDem2 gene (a homologue of DML3 of A. thaliana) and the VaDem1 gene (a homologue of ROS1 of A. thaliana) are important in stress response and our data suggest that the VaDem2 and VaDem1 genes are important candidates for future research on the mechanisms of plant defence responses.
It is known that somatic mutations arising during animal growth and ageing contribute to the development of neurodegenerative and other animal diseases. For plants, several studies showed that small-scale somatic DNA mutations accumulated during Arabidopsis life cycle. However, there is a lack of data on the influence of environmental stresses on somatic DNA mutagenesis in plants. In this study, we analyzed the effects of ultraviolet C (UV-C) irradiation, high soil salinity, and cadmium (CdI₃) stresses on the level of small-scale somatic DNA mutations in Arabidopsis thaliana. The number of DNA mutations was examined in the Actin2 3′UTR (Actin-U1), ITS1-5.8rRNA-ITS2 (ITS), and ribulose-1,5-biphosphate carboxylase/oxygenase (rbcL) DNA regions. We found that somatic mutation levels considerably increased in CdI₃-treated Arabidopsis plants, while the mutation levels declined in the UV-C- and NaCl-treated A. thaliana. Cadmium is a mutagen that is known to inhibit DNA repair processes. The detected stress-induced alterations in somatic DNA mutation levels were accompanied by markedly increased expression of base excision repair genes (AtARP, AtDME, AtDML2, AtDML3, AtMBD4, AtROS, AtUNG, and AtZDP), nucleotide excision repair genes (AtDDB1a, AtRad4, and AtRad23a), mismatch repair genes (AtMSH2, AtMSH3, and AtMSH7), and photoreactivation genes (AtUVR2, AtUVR3). Thus, the results demonstrated that UV-C, high soil salinity, and cadmium stresses influence both the level of DNA mutations and expression of DNA repair genes. Salt- and UV-induced activation of DNA repair genes could contribute to the stress-induced decrease in somatic mutation level.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.