Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Objectives: There is a need to replace liver biopsy with non-invasive markers that predict the degree of liver fibrosis in fatty liver disease related to obesity. Therefore, we studied four potential serum markers of liver fibrosis and compared them with histopathological findings in liver biopsy in children with non-alcoholic fatty liver disease (NAFLD). Methods: We determined fasting serum level of hyaluronic acid (HA), laminin, YKL-40 and cytokeratin-18 M30 in 52 children (age range 4-19, mean 12 years, 80 % of them were overweight or obese) with biopsy-verified NAFLD. Viral hepatitis, autoimmune and metabolic liver diseases (Wilson's disease, alpha-1-antitrypsin deficiency, cystic fibrosis) were excluded. Fibrosis stage was assessed in a blinded fashion by one pathologist according to Kleiner. Receiver operating characteristics (ROC) analysis was used to calculate the power of the assays to detect liver fibrosis (AccuROC, Canada). Results: Liver fibrosis was diagnosed in 19 children (37 %). The levels of HA and CK18M30 were significantly higher in children with fibrosis compared to children without fibrosis (p=0.04 and 0.05 respectively). The ability of serum HA (cut-off 19.1 ng/ml, Se=84 %, Sp=55 %, PPV=52 %, NPV=86 %) and CK18M30 (cut-off 210 u/l, Se=79 %, Sp=60 %, PPV=56 %, NPV=82 %) to differentiate children with fibrosis from those without fibrosis was significant (AUC=0.672 and 0.666, respectively). The combination of both markers was superior (AUC=0.73, p=0.002). Laminin and YKL-40 levels did not allow a useful prediction. Conclusions: Cytokeratin-18 and hyaluronic acid are suitable serum markers predicting liver fibrosis in children with NAFLD. Studying these markers may identify patients at risk of disease progression.
Deoxyguanosine kinase deficiency (dGK) is a frequent cause of the hepatocerebral form of mitochondrial depletion syndrome (MDS). A group of 28 infants with severe progressive liver failure of unknown cause was recruited for post mortem search for deoxyguanosine kinase (DGUOK) gene mutations. Four affected patients (14% of the studied group), two homozygotes, one compound heterozygote, and one heterozygote, with DGUOK mutation found on only one allele, were identified. Three known pathogenic mutations in the DGUOK gene were detected, c.3G>A (p.Met1Ile), c.494A>T (p.Glu165Val), and c.766_767insGATT (p.Phe256X), and one novel molecular variant of unknown pathogeneity, c.813_814insTTT (p. Asn271_Thr272insPhe). Profound mitochondrial DNA depletion was confirmed in available specimens of the liver (4%, 15%, and 10% of the normal value) and in the muscle (4%, 23%, 45%, and 6%, respectively). The patients were born with low weights for gestational age and they presented adaptation trouble during the first days of life. Subsequently, liver failure developed, leading to death at the ages of 18, 6, 5.5, and 2.25 months, respectively. Mild neurological involvement was observed in all children (hypotonia, psychomotor retardation, and ptosis). Hypoglycemia (hypoketotic) and lactic acidosis were the constant laboratory findings. Elevated transferrin saturation, high ferritin, and alpha-fetoprotein levels resembled, in two cases, a neonatal hemochromatosis. Liver histopathology showed severe hepatic damage ranging from micronodular formation and cirrhosis to the total loss of liver architecture with diffuse fibrosis and neocholangiolar proliferation. Pancreatic islet cell hyperplasia with numerous confluent giant islets was found in both autopsied infants. Analysis of the natural history of the disease in our patients and the literature data led us to the following observations: (i) islet cell hyperplasia (and hyperinsulinism) may contribute to MDSassociated hypoglycemia; (ii) iron overload may additionally damage mtDNA-depleted tissues; (iii) low birth weight, adaptation trouble, and abnormal amino acids in newborn screening are frequent in dGK-deficient neonates.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.