Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
 Phosphorylation and dephosphorylation processes catalyzed by numerous kinases and phosphorylases are essential for cell homeostasis and may lead to disturbances in a variety of vital cellular pathways, such as cell proliferation and differentiation, and thus to complex diseases including cancer. As over 80 % of all oncogenes encode protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), which can reverse the effects of tyrosine kinases, are very important tumor suppressors. Alterations in tyrosine kinase and phosphatase genes including point mutations, changes in epigenetic regulation, as well as chromosomal aberrations involving regions critical to these genes, are frequently observed in a variety of cancers. Colorectal cancer (CRC) is one of the most common cancers in humans. CRCs occur in a familial (about 15 % of all cases), hereditary (about 5%) and sporadic (almost 75-80 %) form. As genetic-environmental interrelations play an important role in the susceptibility to sporadic forms of CRCs, many studies are focused on genetic alterations in such tumors. Mutational analysis of the tyrosine phosphatome in CRCs has identified somatic mutations in PTPRG, PTPRT, PTPN3, PTPN13 and PTPN14. The majority of these mutations result in a loss of protein function. Also, alterations in the expression of these genes, such as decreased expression of PTPRR, PTPRO, PTPRG and PTPRD, mediated by epigenetic mechanisms have been observed in a variety of tumors. Since cancer is a social and global problem, there will be a growing number of studies on alterations in the candidate cancer genes, including protein kinases and phosphatases, to determine the origin, biology and potential pathways for targeted anticancer therapy.
The cancer stem cell theory elucidates not only the issue of tumour initiation and development, tumour’s ability to metastasise and reoccur, but also the ineffectiveness of conventional cancer therapy. This review examines stem cell properties, such as self-renewal, heterogeneity, and resistance to apoptosis. The ‘niche’ hypothesis is presented, and mechanisms of division, differentiation, self-renewal and signalling pathway regulation are explained. Epigenetic alterations and mutations of genes responsible for signal transmission may promote the formation of cancer stem cells. We also present the history of development of the cancer stem cell theory and discuss the experiments that led to the discovery and confirmation of the existence of cancer stem cells. Potential clinical applications are also considered, including therapeutic models aimed at selective elimination of cancer stem cells or induction of their proper differentiation.
A body of evidence accumulated over the past decade suggests that epigenetic mechanisms play an essential role in maintaining important cellular functions. Changes in epigenetic patterns (mainly DNA hyper- and hypomethylation and, more recently, histone modifications) may contribute to the development of cancer. Aberrant epigenetic events expand thorough tumor progression from the earliest to latest stages, therefore they can serve as convenient markers for detection and prognosis of cancer. The potential reversibility of epigenetic states in the tumor cell is an attractive target for cancer therapy. Much of our current knowledge on epigenetic alternations in cancer comes from studies on gastrointestinal malignancies, mainly on colorectal cancer, which currently serves as a model for epigenetic tumorigenesis. This review summarizes the current knowledge of epigenetic changes in gastrointestinal cancers and how this relates directly to disease progression and prognosis.
We report on a 13-month-old girl showing dysmorphic features and a delay in psychomotor development. She was diagnosed with a balanced de novo translocation 46,X,t(X; 13)(p 11,2; p 13) and non-random inactivation of the X chromosome. FISH analysis, employing the X chromosome centromere and XIST-region-specific probes, showed that the XIST locus was not involved in the translocation. Selective inactivation of paternal X, which was involved in translocation, was revealed by the HUMARA assay. The pattern of methylation of 5 genes located within Xp, which are normally silenced on an inactive X chromosome, corresponded to an active (unmethylated) X chromosome. These results revealed that in our proband the X chromosome involved in translocation (Xt) was preferentially inactivated. However, genes located on the translocated Xp did not include XIST. This resulted in functional Xp disomy, which most probably accounts for the abnormal phenotype in our patient.
The association between polymorphism in both DNA repair and xenobiotic metabolism genes and can­cer risk has been reported by many authors. Recent studies have revealed the genetic heterogeneity of various populations. Therefore, the aim of our study was to evaluate the frequency of selected polymor­phisms/mutations in 17 minor susceptibility genes and to analyze the pattern of their distribution in a group of 146 healthy, young Polish individuals.The results of our study show that the distribution of studied polymor­phisms displayed a distinct pattern.
CHEK2 gen encodes cell cycle checkpoint kinase 2 that participates in the DNA repair pathway, cell cycle regulation and apoptosis. Mutations in CHEK2 gene may result in kinase inactivation or reduce both catalytic activity and capability of binding other proteins. Some studies indicate that alterations in CHEK2 gene confers increase the risk of breast cancer and some other malignancies, while the results of other studies are inconclusive. Thus the significance of CHEK2 mutations in aetiology of breast cancer is still debatable. The aim of our study was to evaluate the relationship between the breast/ovarian cancer and CHEK2 variants by: i) the analysis of the frequency of selected CHEK2 variants in breast and ovarian cancer patients compared to the controls; ii) evaluation of relationships between the certain CHEK2 variants and clinico-histopathological and pedigree data. The study was performed on 284 breast cancer patients, 113 ovarian cancer patients and 287 healthy women. We revealed the presence of 430T > C, del5395 and IVS2 + 1G > A variants but not 1100delC in individuals from both study and control groups. We did not observe significant differences between cancer patients and controls neither in regard to the frequency nor to the type of CHEK2 variants. We discussed the potential application of CHEK2 variants in the evaluation of breast and ovarian cancer predisposition.
Hirschsprung disease (HSCR) is a congenital, heterogeneous disorder, characterized by the absence of intestinal ganglion cells. Recent advances show that the RET gene is a major locus involved in the pathogenesis of HSCR. The aim of this study was to analyse if the HSCR phenotype in the Polish population is associated with the presence of polymorphisms in exons 2,3,7,11,13,14 and 15 of the RET gene. Molecular results were compared with clinical and long-term follow-up data in 70 Polish patients with HSCR (84.3% with a short segment and 15.7% with a long segment of aganglionic gut). Single-nucleotide polymorphisms were analysed by using the minisequencing SNaPshot multiplex method. The 135G>A polymorphism in RET exon 2 was overrepresented in HSCR patients, compared with a healthy control group. Moreover, the 135G>A variant was shown to be associated with the severe HSCR phenotype. Two other polymorphisms, 2071G>A in exon 11 and 2712C>G in exon 15, were underrepresented in the patients. The results confirm that these RET polymorphisms play a role in the aetiology of HSCR.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.