Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Lactoferrin (LF) is an iron-binding glycoprotein present in the cytoplasmic granules of neutrophils and in external secretions of mammals. Although the biological role of human and bovine lactoferrin has been extensively studied, there is still uncertainty as to the nature and function of lactoferrin receptors. We recently determined that methyl-α-D-mannopyranoside given intraperitoneally (i.p.) could suppress the adjuvant activity of LF in the generation of delayed-type hypersensitivity (DTH) to ovalbumin (OVA). We concluded that the lactoferrin effects in DTH are mediated by carbohydrate-recognizing receptors like the mannose receptor (MR). This study indicates that subcutaneous (s.c.) administration of very small doses of the Man-bovine serum albumin (Man-BSA) complex, together with a sensitizing dose of the antigen, gives the same effects as i.p. administration of methyl-α-D-mannopyranoside. The latter is also a blocker of MR, although of a much lower affinity to the receptor than Man-BSA. The blocking of the adjuvant effect of LF by the Man-BSA complex (when given together with the sensitising dose of antigen) suggests that the function of antigen-presenting cells in the skin (presumably immature dendritic cells expressing MR) is inhibited. The results of our study indicate that a receptor with an affinity for mannose is essential for the mediation of adjuvant lactoferrin function in the generation of DTH.
A human lactoferrin-specific cell line was generated in CBA mice, sensitized with 200 μg HLF in Freund’s complete adjuvant. HLFK1 cells derived from the lymph nodes of these mice were maintained using HLF as the antigen. HLF was added at the beginning of each 14-day restimulation cycle, at a concentration of 100 μg/ml. The presentation of the antigen to HLFK1 was demonstrated using glass-adherent lymphocytes from spleens (GAL) as the antigen-presenting cells (APC). The presentation of HLF by GAL was highly efficient; a very low concentration of the antigen (1 μg/ml) was enough to stimulate proliferation of the HLFK1 cell line. HLFK1 did not proliferate in the presence of ovalbumin or bovine lactoferrin (BLF), which is structurally related to HLF. However, we found that BLF caused a reduction in the proliferation of the HLFK1 cell line when BLF was added to the cultures together with the antigen - (HLF). On the other hand, proliferation of the HLFK1 cell line was not inhibited by pretreatment of the antigen-presenting cells or T cells with BLF. Therefore, we suggest that bovine lactoferrin may interfere with the binding or uptake of the antigen (HLF). Alternatively, BLF may nonspecifically inhibit the activation of the HLFK1 cell line.
The aim of this study was to evaluate the immunoregulatory effects of recombinant human lactoferrin (rhLF) in two in vitro models: (1) the secondary humoral immune response to sheep erythrocytes (SRBC); and (2) the mixed lymphocyte reaction (MLR). We compared the non-sialylated glycoform of rhLF as expressed by glycoengineered Pichia pastoris with one that was further chemically sialylated. In an earlier study, we showed that sialylated rhLF could reverse methotrexate-induced suppression of the secondary immune response of mouse splenocytes to SRBC, and that the phenomenon is dependent on the interaction of lactoferrin (LF) with sialoadhesin (CD169). We found that the immunorestorative activity of sialylated rhLF is also dependent on its interaction with the CD22 antigen, a member of the immunoglobulin superfamily that is expressed by B lymphocytes. We also demonstrated that only sialylated rhLF was able to inhibit the MLR reaction. MLR was inhibited by bovine lactoferrin (bLF), a glycoform that has a more complex glycan structure. Desialylated bLF and lactoferricin, a bLF-derived peptide devoid of carbohydrates, did not express such inhibitory activity. We showed that the interaction of LF with sialic acid receptors is essential for at least some of the immunoregulatory activity of this glycoprotein.
Our previous studies demonstrated that among phenothiazines several derivatives could be found showing strong antiproliferative actions and the property of inhibiting inducible tumor necrosis factor alpha (TNF α) production in human blood cultures. The aim of this investigation was to determine potential antimicrobial actions of forty four new phenothiazine derivatives with the quinobenzothiazine structure. The compounds showed differential antibacterial and antifungal activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans depending on the compound structures, concentrations and bacterial strains. More specifically, 6-(1-methyl-2-piperidylethyl) quinobenzothiazine displayed strongest actions against S. aureus and E. coli whereas 6-methanesulfonylaminobutyl-9-methylthioquinobenzothiazine exhibited the most universal antimicrobial properties. The correlation between antimicrobial activity and the chemical structure of quinobenzothiazines was discussed.
We compared the susceptibility to viral infection of splenocytes, isolated from young versus old CBA mice, and evaluated the antiviral actions of lactoferrin in splenocytes infected with Encephalomyocarditis virus (EMCV). Recombinant mouse lactoferrin (rmLF) and bovine lactoferrin (bLF) were used. There were no differences in the susceptibility to EMCV infection in the studied age categories. Both types of lactoferrins were protective in young and old mice. The study confirmed the undisturbed viral resistance in old mice and the protective actions of lactoferrin in viral infection. The antiviral action of the homologous mouse lactoferrin was demonstrated for the first time.
In this study, we evaluated the activities of new types of azaphenothiazines in the following immunological assays: the proliferative response of human peripheral blood mononuclear cells induced by phytohemagglutin A or anti-CD3 antibodies; lipopolysaccharide-induced cytokine production by human PBMC; the secondary, humoral immune response in mice to sheep erythrocytes (in vitro); and delayed-type hypersensitivity in mice to ovalbumin (in vivo). In some tests, chlorpromazine served as a reference drug. The compounds exhibited differential inhibitory activities in the proliferation tests, with 10H-2,7-diazaphenothiazine (compound 1) and 6-(3-dimethylaminopropyl)diquinothiazine (compound 8) being most suppressive. Compound 1 was selected for further studies, and was found to be strongly suppressive in the humoral immune response even at low concentrations (1 μg/ml). Compound 1 also inhibited the delayed-type hypersensitivity lipopolysaccharide-induced production of tumor necrosis factor and interleukin-6 in cultures of human blood cells. As there were only two subjects in this study, the effects of these compounds on human blood cells need to be confirmed. In this paper, we also discuss the structure-activity relationships of selected compounds.
The aim of this study was to evaluate protective effects of glycomacropeptide (GMP), a kappa casein-derived peptide, in experimentally induced endotoxemia or bacteremia in mice. The results showed that BALB/c mice, given intraperitoneally (i.p.) GMP, 24h before intravenous (i.v.) injection of a high dose of lipopolysaccharide (LPS) from Escherichia coli, strongly inhibited serum levels of tumor necrosis factor alpha (TNF alpha) and interleukin 6 (IL-6), measured 2h later by bioassays. In addition, GMP, administered 24h before infection of CBA mice with a sublethal dose of E. coli, significantly lowered the number of bacterial cells in the spleen. The analysis of main blood cell types in mice pretreated 24h prior to infection with GMP revealed significant increase in the content of granulocytes and immature neutrophils. We, therefore, postulate, that induction of myelopoiesis by GMP may be a primary cause of the increased clearance of bacteria during the development of bacteremia in mice.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.