Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 28

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
We investigated how factors underlying local spatial variations controlled needle litter decomposition across a chronosequence of Chinese pine (Pinus tabuliformis Carr.) forests. Litterbag methods were used to measure changes in litter chemistry and the mass loss of leaf litter, as well as selective biotic and abiotic factors during the growing seasons (May-October) in 2013 and 2014 in a set of fully replicated P. tabuliformis Carr. secondary forest stands that differ in age in northern China. During the two growing seasons the path analysis identified the litter lignin/N ratio, soil microbial metabolic quotient (qCO₂), soil diversity of fungal assemblages (SFD), and soil-water content (SWC) as dominant controlling factors in needle litter decomposition, collectively explaining 76.9% of the total variation in mass loss across the entire age sequence. Litter lignin/N and soil qCO₂ had the greatest negative effects on the k value, followed by weaker positive effects of SFD and SWC. Our findings indicate that forest stand age has a great influence on needle litter decomposition by determining litter quality, with soil microbial activity and local environmental factors being secondary drivers in needle litter decomposition across a chronosequence of Chinese pine (Pinus tabuliformis Carr.) forests.
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

The effect of light on nitrate uptake by wheat roots

100%
Illuminating shoots stimulates nitrate uptake by wheat (Triticum aestivum L. cv. ‘EM18’) roots. A method with a high time resolution (minutes), non-invasive technique, has enabled to measure the nitrate uptake time coarsely. The nitrate uptake by wheat roots increases in the light and decreases in the dark. The mechanism is thought to be via a signal carried in phloem, probably a sugar.
Litter quality is often considered the main driver of rates of decomposition. Litter decomposes faster in its home environment than in any other environment, which is called the home-field advantage (HFA). However, evidence for this phenomenon has not been universal. In addition, litter mixtures of different species can induce a non-additive effect (NAE) on decomposition processes. However, the direction and magnitude of NAE vary and underlying mechanisms remain unclear. The aim of our study was to assess the effect of litter quality on leaf-litter decomposition in the context of HFA and NAEs in temperate forests in China. Litterbags containing aspen (Populus davidiana), birch (Betula platyphylla), and oak (Quercus liaotungensis) litter were incubated in situ in pure aspen and broadleaved mixed forests in Chinese temperate forests for 360 days. The main results were: 1. Aspen litter with a low C/N ratio and high initial N concentration decomposed faster than birch litter, both of which decomposed faster than oak litter, which had the lowest quality. 2. The rate of decomposition of oak litter was significantly higher in the broadleaved mixed forest than in pure aspen stands; however, the rate of decomposition of birch litter was not significantly different from pure aspen stands and broadleaved mixed forest. 3. Contrary to what was predicted, the mixture of aspen and birch litter decomposed faster than expected. However, both the aspen/oak and birch/oak mixtures had a neutral mixing effect where the rates of decomposition were slightly faster than expected. 4. Controlling factors based on linear models show that the order of the relative importance of their effect on litter decomposition was as follows: litter quality, forest floor environment, and litter mixtures. This study indicates that: 1. The various litter species exhibited different litter-environment interactions, such as favoring or contradicting the HFA hypothesis. 2. Litter mixture treatments can induce different mixing effects. 3. Compared with environment and litter mixtures, litter quality is the dominant factor in controlling the rate of litter decomposition.
Climate change scenarios suggest that plants will be exposed to increasing levels of ultraviolet radiation in the future. The dove tree, Davidia involucrata Bill (Davidiaceae) is a rare and endangered tree species in China. Its distribution is predicted to become more montane as the climate warms, exposing it to higher levels of UV-B and different soil conditions. We compared the effects of glasshouse ambient (7.08 uW cm–2) and increased (13.93 uW cm–2) UV-B on survivorship, secondary metabolites indicative of radiation damage, and putative defensive responses of Davidia involucrata saplings growing under current and increased nitrogen conditions (5 and 25 g m–2 a–1 N). Mortalities were higher among plants exposed to increased UV-B, but only in soils with high supplementary nitrogen. Increases in compounds associated with defense against radiation were more frequently recorded under high supplementary nitrogen conditions. This rare and localised plant is highly sensitive to elevated UV-B when growing in high nitrogen soils, a combination that is likely to increase in the summer.
As an environmental factor, light influences the physiological functions and secondary metabolism of plants. However, the role of light in cotton fiber development and pigment biosynthesis has not yet been thoroughly explored. In this study, ovules of green cotton were cultured in vitro under dark and light conditions, and fiber and ovule growth parameters as well as fiber carbohydrate and cellulose contents and the expression of genes related to fiber development were investigated to elucidate the effect of light on fiber development. In addition, to investigate the effect of light on fiber pigment biosynthesis, the fiber flavonoid content and related gene expression were determined. The results demonstrated that the fiber length and the expression levels of fiber elongation genes under light culture were significantly lower than under dark culture, however, the ovule and fiber weight were significantly higher than under dark culture. The fiber developed under light culture had higher carbohydrate concentrations and carbohydrate transformation rate than under dark culture. Additionally, light culture exhibited higher cellulose contents and expression levels of cellulose biosynthesis genes compared with dark culture. In contrast, the pattern of the effect of light on flavonoid biosynthesis differed from that for cellulose biosynthesis. At 10 DAC (days after culture) and 20 DAC, the flavonoid contents and the expression levels of genes related to flavonoid biosynthesis were lower than under dark culture. However, the flavonoid contents and gene expression levels observed at 30 DAC and 40 DAC were higher in the light culture than in the dark culture. These results suggested that light hindered fiber elongation, but promoted carbohydrate accumulation and carbohydrate transformation, which resulted in fiber weight gain and increased cellulose accumulation in fibers. In addition, light inhibited flavonoid biosynthesis at early stage of fiber development, but promoted it at later stages. These findings provide the basis for intensive study of fiber development and flavonoids biosynthesis in green cotton.
Sheep manure was used to prepare biochar under pyrolysis temperature of 600ºC. The structural features of biochar were characterized by elemental analysis, BET analysis and scanning electron microscopy. The effects of pH, biochar dosage, adsorption time, temperature on adsorption of methyl orange (MO) in water by sheep manure biochar, as well as its adsorption mechanism, were investigated via batch experiments. The results showed that the sheep manure biochar had large specific surface area, abundant hole structure and high aromaticity and polarity. When temperature was 25ºC, MO concentration was 20 mg/L, initial pH was 4.0, and biochar dosage was 0.6 g/L, the adsorption achieved balance at about 250min, and the MO removal rate reached to 92.55%. Pseudo second-order kinetic model and Langmuir model could more accurately describe the adsorption behavior of MO onto sheep manure biochar, and the theoretical maximum adsorption capacity was 42.513 to 45.563 mg/g. Besides, the process is a favorable adsorption. Thermodynamic studies showed that the adsorption was a spontaneous, endothermic and entropy-increasing process. Sheep manure biochar could be used as a good adsorption material for MO in water, which achieved the goal of controlling waste by waste.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate special target mRNAs at the post-transcriptional level by directing target mRNA cleavage or translational inhibition. Plant miRNAs regulate gene expression mainly by guiding cleavage of target mRNAs and subsequently play important roles in diverse developmental processes, nutrient homeostasis and responses to biotic and abiotic stresses. MiRNA393 plays important and diverse roles in defense against bacterial pathogens by negatively targeting transport inhibitor response 1 (TIR1) in plant development. It will be essential for understanding complex feedback regulations in the development pathway by unraveling the miR393 network in a temporal and spatial manner. Here, we report that Zma-miR393b down-regulates its putative target TIR1-like (F-box) gene by guiding the cleavage of their mRNAs in development of leaf sheaths in response to R. Solani infection, Zma-miR393b and its putative target gene TIR1 were confirmed through Q-PCR and the spatial expression of Zma-miR393b was further analyzed by in situ hybridization. These findings suggested that, as a negative feedback regulation of TIR1-like (F-box) gene, Zma-miR393b plays an important role in defense against R. Solani infection.
The molecular mechanisms involved in leaf color variation were investigated in crabapple. Using the total RNA from the leaves of crabapple ‘Royalty’ as the template, the full cDNA of F3H (Flavanone-3-hydroxylase) gene (1,370 bp) was cloned by reverse transcription polymerase chain reaction and rapid-amplification of cDNA ends. The gene was named as McF3H, containing a 1,092-bp open reading frame encoding a protein of 364 amino acids. Corresponding genomic DNA sequence was 1,983 bp, containing two introns, and all the cleave sites obeyed the GT–AG rule. The expression of McF3H gene following leaf development was determined by real-time quantitative PCR in the leaves of three crabapple varieties, ‘Flame’ (both young and mature leaves are green), ‘Radiant’ (young leaves are orange to red and mature leaves are green) and ‘Royalty’ (both young and mature leaves are red to purple). The results showed that McF3H gene was expressed in both red and green leaves. But the expression levels of McF3H gene in ever-red-leafed ‘Royalty’ were significantly higher than in evergreen-leafed ‘Flame’ at all stages of leaf development. The transcript level in ‘Radiant’ showed the similar temporal pattern to the variation of leaf color following its leaf development. Also, the anthocyanin accumulation levels in crabapple leaves were consistent with the color variation of leaves. These results suggest that McF3H gene is one of the important structure genes related to anthocyanin accumulation in crabapple leaves and the red coloration of crabapple leaf is associated with high expression level of this gene.
Atrazine is a widely used herbicide, and because of its potential to seriously pollute soil and water resources, has attracted widespread attention. In this study, the bacterial strain LY-1 was isolated and identified as the species Arthrobacter. At present, there are many different atrazine-degrading bacteria that have been screened out, including Arthrobacter sp., Pseudomonas sp., and Shewanella sp. However, previous reports only studied their degradation effects and soil remediation capabilities under optimum conditions and there were few studies performed which took into account a wider array of environmental circumstances. This study investigated the degradation effects of LY-1, as well as its capacity for soil remediation, under various conditions. The strain had broad optimum ranges of temperature and pH and the additional carbon and nitrogen sources did not decrease the atrazine degradation rate. In addition, the soil remediation tests indicated that the strain LY-1 might be a good candidate for bioremediation of atrazine-polluted soil.
Crop canopy temperature reflects the interactions among plants, soil and atmosphere. Through a longterm investigation into physiological characteristics of different canopy temperature wheat, it is found that some wheat exist a high canopy temperature while others a low one, which was closely correlated with their corresponding performance. Under simulated drought conditions, the physiological aspects of different canopy temperature wheat, such as leaf functional duration, chlorophyll content, activities of superoxide dismutase, protein content, transpiration rate, net photosynthesis rate, etc., were investigated, the result showed that wheat with low canopy temperature could maintain superiority to wheat with high canopy temperature in those physiological traits. Therefore, the low canopy temperature in wheat could be used as an index to evaluate physiological capacities of wheat under drought conditions and also as a useful marker for wheat breeding for drought tolerance.
Accumulation of salts in soils has become a serious environmental threat for plant growth and causes considerable loss in yield. Okra Abelmoschus esculentus L. is an important crop and sensitive to saline stress. In the present study, to explore methods for growing okra in salty area, exogenous gibberellic acid (GA₃) and ascorbic acid (AsA) were foliage applied on okra seedling under NaCl stress. The results showed that treatment with 100 mM NaCl decreased shoot length, root length, fresh weight, dry weight, contents of chlorophyll pigments and nutrient elements, enhanced levels of electrolyte leakage, H₂O₂, lipid peroxidation and activities of antioxidant enzymes. Treatments with 0.1 mM GA₃ and/or 0.1 mM AsA could alleviated harmful effects of saline stress on okra seedlings by improving growth indicators, increasing contents of chlorophyll and carotenoids, stimulating activities of antioxidant enzymes and decreasing electrolyte leakage, H₂O₂ content and lipid peroxidation. Moreover, concentrations of K, Ca, Mg and Fe in leaves and roots as well as levels of osmo-protectants (proline and soluble protein) increased in response to treatment with GA₃ + AsA in NaCl-stressed okra seedling. Overall, foliar application of GA₃ and/or AsA demonstrated benefits to okra seedlings in salty environments. Combined application of GA₃ and AsA was more effective than sole use of GA₃ or AsA alone.
Phosphate-solubilizing bacteria (PSB) increase phosphate bioavailability, thereby reducing the application frequency of chemical fertilizers in the production of Nicotiana tabacum (tobacco). In this study, PSB were isolated from tobacco plants for the first time. These PSB were screened in vitro for their ability to solubilize inorganic P (Pi) when grown in association with tobacco plants. Thirty-six PSB with the ability to solubilize Pi were isolated and screened for their indolyl-3-acetic acid and siderophore-producing capabilities. In addition, all 36 PSB strains had a partial fragment of their 16S rRNA gene sequenced. The analysis revealed high sequence identity to 16S rDNA sequences from Bacillus, Arthrobacter, Providencia, Enterobacter, Proteus, Psychrobacter, Serratia, Rhodococcus, Pseudomonas, Ochrobactrum, and Acinetobacter. Of the 36 PSB strains analyzed, three (Psychrobacter alimentarius HB15, Enterobacter ludwigii HB21, and Ochrobactrum haematophilum HB36) were selected for a controlled plant inoculation experiment. Inoculation of tobacco plants with these bacterial strains significantly increased plant dry weight. Additionally, inoculation increased P, K, and N uptake by tobacco seedlings as well as soil P availability. The increases observed with inoculation were even more pronounced when tricalcium phosphate (TCP) was added to the soil. The phosphate-solubilizing activity of these three strains was correlated with the release of gluconic, tartaric, acetic, and citric organic acids. Overall, co-inoculation of PSB and TCP appears to represent a promising option for increasing the yield of tobacco plants. The adoption of this technique could provide a pathway to reducing fertilizer input in agricultural settings.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.