Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Pot experiments were designed to test the applicability of root electrical capacitance measurement for in situ monitoring of root water uptake activity by growing cucumber and bean cultivars in a growth chamber. Half of the plants were inoculated with Funneliformis mosseae arbuscular mycorrhizal fungi, while the other half served as non-infected controls. Root electrical capacitance and daily transpiration were monitored during the whole plant ontogeny. Phenology-dependent changes of daily transpiration (related to root water uptake) and root electrical capacitance proved to be similar as they showed upward trends from seedling emergence to the beginning of flowering stage, and thereafter decreased continuously during fruit setting. A few days after arbuscular mycorrhizal fungi-colonization, daily transpiration and root electrical capacitance of infected plants became significantly higher than those of non-infected counterparts, and the relative increment of the measured parameters was greater for the more highly mycorrhizal-dependent bean cultivar compared to that of cucumber. Arbuscular mycorrhizal fungi colonization caused 29 and 69% relative increment in shoot dry mass for cucumbers and beans, respectively. Mycorrhization resulted in 37% increase in root dry mass for beans, but no significant difference was observed for cucumbers. Results indicate the potential of root electrical capacitance measurements for monitoring the changes and differences of root water uptake rate.
A pot experiment was designed to demonstrate that the parallel, single-frequency detection of electrical capacitance (CR), impedance phase angle (ΦR), and electrical conductance (GR) in root–substrate systems was an adequate method for monitoring root growth and some aspects of stress response in situ. The wheat cultivars ‘Hombar’ and ‘TC33’ were grown in a rhyolite-vermiculite mixture under control, and low, medium, and high alkaline (Na₂CO₃) conditions with regular measurement of electrical parameters. The photochemical efficiency (Fv/Fm) and SPAD chlorophyll content were recorded non-intrusively; the green leaf area (GLA), shoot dry mass (SDM), root dry mass (RDM), and root membrane stability index (MSI) were determined after harvest. CR progressively decreased with increasing alkalinity due to impeded root growth. Strong linear CR–RDM relationships (R² = 0.883–0.940) were obtained for the cultivars. Stress reduced |ΦR|, presumably due to the altered membrane properties and anatomy of the roots, including primarily enhanced lignification. GR was not reduced by alkalinity, implying the increasing symplastic conductivity caused by the higher electrolyte leakage indicated by decreasing root MSI. Fv/Fm, SPAD value, GLA, and SDM showed decreasing trends with increasing alkalinity. Cultivar ‘TC33’ was comparatively sensitive to high alkalinity, as shown by the greater relative decrease in CR, SDM, and RDM under stress, and by the significantly lower MSI and higher (moderately reduced) |ΦR| compared to the values obtained for ‘Hombar’. Electrical root characterization proved to be an efficient non-intrusive technique for studying root growth and stress responses, and for assessing plant stress tolerance in pot experiments.
Appropriate selection and well-timed measurement of plant developmental, morphological and physiological parameters are essential to maximize efficacy and minimize time consumption of experiments. To select for the most sensitive indicators of drought or salt stress, three independent pot experiments with diverse setups were analysed with 20–20 measured parameters. Parameters of plant growth, phenology and symbiotic interactions, visual stress symptoms, photosynthetic activity, nutrient composition and vitality were studied and the result matrices were evaluated with principal component analysis (PCA). Stress effects manifested in PC1 of two experiments and in PC2 of the third one. Traits assumed to be adequate for stress indication were characterized by high PC1 or PC2 loading values. Beside parameters of biomass production, growth and visible stress symptoms, less evident traits e.g. root electrical capacitance, membrane stability index in roots and leaves, relative water content of leaves and SPAD units were identified.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.