PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 67 | 2 |

Tytuł artykułu

Effect of physical osmosis methods on quality of tilapia fillets processed by heat pump drying

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In order to achieve the influence of different pretreatment methods on heat pump dried tilapia fillets, the effects of trehalose, ultrasound-assisted and freeze-thaw cycle assisted osmotic dehydration on the color, rehydration, texture and Ca2+-ATPase activity were investigated. Tilapia fi llets (100 mm length × 50 mm width × 5 mm height) were first osmoconcentrated in a trehalose solution combined with 4°C under atmospheric pressure for 1 h, different power of ultrasound and freeze-thawing respectively, then heat pump dried. The results showed that under the same drying method, the comprehensive score of ultrasound in 400 Watt was best, compared to freeze-thaw, the ultrasound pretreatment had a significant (p<0.05) effect on the color and Ca2+-ATPase activity, but had no significant (p>0.05) effect on the rehydration and texture. However, both of them significantly (p<0.05) affected the quality in comparison to that of osmosis at 4°C. It indicates that suitable ultrasonic pretreatment conditions improve the quality of dried products effectively and the conclusion of this research provides reference for heat pump dried similar products.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

2

Opis fizyczny

P.145-150,fig.,ref.

Twórcy

autor
  • College of Engineering, Guangdong Ocean University, Zhanjiang 524088, P.R. China
autor
  • College of Engineering, Guangdong Ocean University, Zhanjiang 524088, P.R. China
autor
  • College of Engineering, Guangdong Ocean University, Zhanjiang 524088, P.R. China

Bibliografia

  • 1. Bai J.W., Sun D.W., Xiao H.W., Mujumdar A.S., Gao Z.J., Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innov. Food Sci. Emerg. Technol., 2013, 20, 230–237.
  • 2. Bhaskaracharya R.K., Kentish S., Ashokkumar M., Selected app lications of ultrasonics in food processing. Food Eng. Rev., 2009, 1, 31–49.
  • 3. Cataldo A., Cannazza G., De Benedetto E., Severini C., Derossi A., An alternative method for the industrial monitoring of osmotic solution during dehydration of fruit and vegetables: A testcase for tomatoes. J. Food Eng., 2011, 105,186–192.
  • 4. Contreras C., Martín M.E., Martínez-Navarrete N., Chiralt A., Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. LWT – Food Sci. and Technol., 2005, 38, 471–477.
  • 5. Deng Y., Liu Y.M., Qian B.J., Su S.Q.,Wu J., Song X.Y., Yang H.S., Impact of far-infrared radiation-assisted heat pump drying on chemical compositions and physical properties of squid (Illex illecebrosus) fillets. Eur. Food Res. Technol., 2011, 232, 761–768.
  • 6. Deng Y., Zha o Y.Y., Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT – Food Sci. Technol., 2008, 41, 1575–1585.
  • 7. Derossi A., Severini C., Del Mastro A., De Pilli T., Study and optimization of osmotic dehydration of cherry tomatoes in complex solution by response surface methodology and desirability approach. LWT – Food Sci. Technol., 2015, 60, 641–648.
  • 8. De Santos F., Rojas M., Lockhorn G., Brewer M.S., Effect of carbon monoxide in modified atmosphere packaging, storage time and endpoint cooking temperature on the internal color of enhanced pork. Meat Sci., 2007, 77, 520–528.
  • 9. Duan Z.H., Jiang L.N., Wang J.L., Yu X.Y., Wang T., Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating. Food Bioprod. Process, 2011, 89, 472–476.
  • 10. Fathi M., Mohebbi M., Razavi S.M.A., Effect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithm. Food Bioprod. Process, 2011, 4, 1519–1526.
  • 11. Fernandes F.A.N., Rodrigues S., Ultrasound as pre-treatment for drying of fruits: dehydration of banana. J. Food Eng., 2007, 82, 261–267.
  • 12. Gamboa-Santos J., Montilla A., Cárcel J.A., Vilamiel M., Garcia-Perez J.V., Air-borne ultrasound application in the convective drying of strawberry. J. Food Eng., 2014, 128, 132–139.
  • 13. Guan Z.Q., Wang X.Z., Li M., Jiang X.Q., Mathematical modeling on hot air drying of thin layer fresh tilapia fillets. Pol. J. Food Nutr. Sci., 2013, 63, 25–34.
  • 14. Hu Q., Zhang M., Mujumdar A.S., Du Wei-Hue, Sun J.C., Effects of different drying methods on the quality changes of granular edamame. Drying Technol., 2006, 24, 1025–1032.
  • 15. Kowalski S.J., Szadzinska J., Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chem. Eng. Proc., 2014, 82, 65–70.
  • 16. Lewicki P.P., Design of hot air drying for better foods. Trends Food Sci. Technol., 2006, 17, 153–163.
  • 17. Li M., Guan Z.Q., Liu L., Optimization of heat pump drying process of tilapia fillet by secondary multiple regression analytical method. J. Refrig., 2011, 32, 58–62.
  • 18. Mandala I.G., Anagnostaras E.F., Oikonomou C.K., influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J. Food Eng., 2005, 69, 307–316.
  • 19. Mittal M., Roper III J.A., Jackson C.L., Monaghan G.G., Francis L.F., Effects of freezing and thawing on the microstructure of latex paints. J. Coll. Interf. Sci., 2013, 392,183–193.
  • 20. Nowacka M., Tylewicz U., Laghi L., Dalla Rosa M., Witrowa-Rajchert D., Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem., 2014, 144, 18–25.
  • 21. Nowacka M., Wiktor A., Śledź M., Jurek N., Witrowa-Rajchert D., Drying of ultrasound pretreated apple and its selected physical properties. J. Food Eng., 2012, 113, 427–433.
  • 22. Oliveira F.I.P., Gallão M.I., Rodrigues S., Fernandes Fabiano A.N., Dehydration of Malayapple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food Bioproc. Technol., 2011, 4, 610–615.
  • 23. Ortiz J., Lemus-Mondaca R., Vega-Gálvez A., Ah-Hen K., Puente-Diaz L., Zura-Bravo L., Aubourg S., influence of air-drying temperature on drying kinetics, colour, firmness, and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets. Food Chem., 2013, 139,162–169.
  • 24. Ozuna C., Cárcel J.A., Walde P.M., Garcia-Perez J.V., Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innov. Food Sci. Emerg. Technol., 2014, 23, 146–155.
  • 25. Prothon F., Ahrné L., Sjöholm I., Mechanisms and prevention of plant tissue collapse during dehydration: a critical review. Crit. Rev. Food Sci. Nutr., 2003, 43, 447–479.
  • 26. Rodríguez Ó., Santacatalina J.V., Simal S., Garcia-Perez J.V., Femenia A., Rossello C., influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. J. Food Eng., 2014, 129, 21–29.
  • 27. Schössler K. , Jäger H., Knorr D., Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innov. Food Sci. Emerg. Technol., 2012a, 16, 113–120.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5b9796bf-419b-424b-af98-1738925c86f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.