PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 63 | 2 |

Tytuł artykułu

Arthropod trace fossils from Eocene cold climate continental strata of King George Island, West Antarctica

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Siltstone and sandstone beds of the Mount Wawel Formation (Eocene) contain trace fossils interpreted as insect resting traces and arthropod trackways, the latest determined as Glaciichnium australis isp. nov. and cf. Pterichnus isp. Glaciichnium is included in a new ichnofamily Protichnidae, which embraces invertebrate trackways composed of straight central trail(s) and lateral tracks. The same deposits contain fragments of plant stems in growth position, delicate fern-like plant twigs and leaves of Nothofagus. Their deposition took place in very shallow but flowing water, probably in a marginal part of a lake, perhaps in a delta. The presence of mudcracks proves incidental exposure of the sediment. The trace fossils were produced by arthropods, especially insects and/or isopods, between episodes of deposition and were influenced by the water flow and subtle changes in substrate consistency. This resulted in several morphological variants of the traces. Glaciichnium australis is similar to those produced by some caddisflies (Trichoptera) in shallow puddles in the Tatra Mountains of Poland. The arthropod-dominated trace fossil assemblage is similar to the Glaciichnium ichnocoenosis, which is known from some Pleistocene lacustrine varve sediments of Europe. This fits well with the beginning of climatic cooling in Antarctica during the late Eocene. This also shows the recurrence of some ichnological features on both ends of the globe in similar palaeoenvironmental conditions and supports basics of the ichnofacies concept.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

2

Opis fizyczny

p.383-396,fig.,ref.

Twórcy

autor
  • Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Krakow, Poland
autor
  • Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland

Bibliografia

  • Abel, O. 1935. Vorzeitliche Lebensspuren. 644 pp. Gustav Fischer, Jena.
  • Birkenmajer, K. 1981. Lithostratigraphy of the Point Hennequin Group (Miocene volcanics and sediments) at King George Island, (South Shetland Islands, Antarctica). Studia Geologica Polonica 72: 59–73.
  • Birkenmajer, K. 1989. A guide to Tertiary geochronology of King George Island, West Antarctica. Polish Polar Research 10: 555–579.
  • Birkenmajer, K. 1997. Tertiary glacial/interglacial palaeoenvironments and sea-level changes, King George Island, West Antarctica: an overview. Bulletin of the Polish Academy of Sciences. Earth Sciences 44: 157–181.
  • Birkenmajer, K. 2001. Mesozoic and Cenozoic stratigraphic units in parts of the South Shetland Islands and northern Antarctic Peninsula (as used by the Polish Antarctic Programmes). Studia Geologica Polonica 118: 5–188.
  • Birkenmajer, K. 2002. Geological Map and Cross-sections (1:50 000). Admiralty Bay, King George Island, South Shetland Islands, West Antarctica. Institute of Geological Sciences, Cracow Research Centre and Department of Antarctic Biology, Warszawa.
  • Birkenmajer, K. 2003. Admiralty Bay, King George Island (South Shetland Islands, West Antarctica): a geological monograph. In: K. Birkenmajer (ed.), Geological Results of the Polish Antarctic Expeditions. Studia Geologica Polonica 120: 5–73.
  • Birkenmajer, K., Gaździcki, A., Krajewski, K., Przybycin, A., Solecki, A., Tatur, A., and Yoon, H.I. 2005. First Cenozoic glaciers in West Antarctica. Polish Polar Research 26: 3–12.
  • Birkenmajer, K. and Zastawniak, E. 1989. Late Cretaceous–early Tertiary floras of King George Island, West Antarctica: their stratigraphic distribution and palaeoclimatic significance. In: J.A. Crame (ed.), Origins and Evolution of the Antarctic Biota. Geological Society, London, Special Publications 47: 227–240.
  • Braddy, S.J. 2003. Trackways—arthropod locomotion. In: D.E.G. Briggs and P.R. Crowther (eds.), Palaeobiology II, 389–393. Blackwell, London.
  • Brady, L.F. 1947. Invertebrate tracks of the Coconino sandstone of Northern Arizona. Journal of Paleontology 21: 466–472.
  • Buatois, L.A. and Mángano, M.G. 1993. Trace fossils from a Carboniferous turbiditic lake: implications for the recognition of additional nonmarine ichnofacies. Ichnos 2: 237–258.
  • Buatois, L.A. and Mángano, G.M. 1998. Trace fossil analysis of lacustrine facies and basins. Palaeogeography, Palaeoclimatology, Palaeoecology 140: 367–382.
  • Buatois, L.A. and Mángano, M.G. 2011. Ichnology: Organism-Substrate Interactions in Space and Time. 358 pp. Cambridge University Press, Cambridge.
  • Cantrill, D.J. and Poole, I. 2012. The Vegetation of Antarctica through Geological Time. 480 pp. Cambridge University Press, Cambridge.
  • Davis, R.B., Minter, N.J., and Braddy, S.J. 2007. The neoichnology of terrestrial arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology, 255: 284–307.
  • Davies, B.J., Hambrey, M.J., Smellie, J.L., Carrivick, J.L., and Glasser, N.F. 2012. Antarctic Peninsula ice sheet evolution during the Cenozoic Era. Quaternary Science Reviews 31: 30–66.
  • Donovan, E. 1813. The Natural History of British Insects. Vol. 16. 225 pp. Bye & Law, London.
  • Dutra, T.L. 2001. Paleoflora da ilha 25 de Mayo (King George Island), Peninsula Antarctica: contribuição à paleogeografia, paleoclima e para a evolução de Nothofagus. Asociación Paleontológica Argentina, Publicación Especial 8: 29–37.
  • Dutra, T.L. 2004. Paleofloras de Antártica e sua relaçno com os eventos tectonicos e paleoclimáticos nas altas latitudes do sul. Revista Brasileira de Geociencias 34: 401–410.
  • Farlow, J.O., Robinson, N.J., Kumagai, C.J., Paladino, F.V., Falkingham, P.L., Elsey, R.M., and Martin, A.J. 2018. Trackways of the American crocodile (Crocodylus acutus) in northwestern Costa Rica: Implications for crocodylian ichnology. Ichnos 25: 30–65.
  • Fitch, A. 1850. A historical, topographical and agricultural survey of the County of Washington. Parts 2–5. Transactions of the New York Agricultural Society 9: 753–944.
  • Fontes, D. and Lindner Dutra, T. 2010. Paleogene imbricate-leaved podocarps from King George Island (Antarctica): assessing the geological context and botanical affinities. Revista Brasileira de Paleontologia 13: 189–204.
  • Francis, J.E., Ashworth, A., Cantrill, D.J., Crame, J.A., Howe, J., Stephens, R., Tosolini, A.-M., and Thorn, V. 2008. 100 million years of Antarctic climate evolution: evidence from fossil plants. In: A.K. Cooper, P. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise, and the 10th ISAES editorial team (eds.), Antarctica: a Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences, 19–27. National Academies Press, Washington, D.C.
  • Francis, J.E., Marenssi, S., Levy, R., Hambrey, M. Thorn, V.C., Mohr, B., Brinkhuis, H., Warnaar, J., Zachos, J., Bohaty, S., and DeConto, R. 2009. From greenhouse to icehouse—the Eocene/Oligocene in Antarctica. In: F. Florindo and M. Siegert (eds.), Antarctic Climate Evolution. Development in Earth and Environmental Sciences 8: 309–368.
  • Gaillard, C., Hantzpergue, P., Vannier, J., Margerard, A.L., and Mazin, J.M. 2005. Isopod trackways from the Crayssac Lagerstätte, Upper Jurassic, France. Palaeontology 48: 947–962.
  • Genise, J.F. 2000. The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos 7: 267–282.
  • Genise, J.F. 2017. Ichnoentomology: Insect Traces in Soils and Paleosols. Topics in Geobiology 37. 695 pp. Springer International, Switzerland.
  • Getty, P.R., Sproule, R., Stimson, M.R., and Lyons, P.C. 2017. Invertebrate trace fossils from the Pennsylvanian Rhode Island Formation of Massachusetts, USA. Atlantic Geology 53: 185–206.
  • Getty, P.R., Sproule, R., Wagner, D.L., and Bush, A.M. 2013. Variation in wingless insect trace fossils: Insights from neoichnology and the Pennsylvanian of Massachusetts. Palaios 28: 243–258.
  • Gibbard, P.L. and Dreimanis, A. 1978. Trace fossils from late Pleistocene glacial lake sediments in southwestern Ontario, Canada. Canadian Journal of Earth Sciences 15: 1967–1976.
  • Gibbard, P.L. and Stuart, A.J. 1974. Trace fossils from proglacial lake sediments. Boreas 3: 69–74.
  • Gilmore, C.W. 1926. Fossil footprints from the Grand Canyon. Smithsonian Miscellaneous Collections 77: 1–41.
  • Gilmore, C.W. 1927. Fossil footprints from the Grand Canyon, 2nd Contribution. Smithsonian Miscellaneous Collections 80: 1–78.
  • Hanken, N. and Strømer, L. 1975. The trail of large Silurian eurypterid. Fossil and Strata 4: 225–270.
  • Häntzschel, W. 1975. Trace fossils and problematica. In: R.C. Moore and C. Teichert (eds.), Treatise on Invertebrate Paleontology. Part W. Miscellanea, W1–W269. Geological Society of America, Boulder and University of Kansas Press, Lawrence.
  • Hitchcock, E. 1858. Ichnology of New England. A Report on the Sandstone of the Connecticut Valley, Especially its Footprints. 220 pp. W. White, Boston.
  • Hitchcock, E. 1865. Supplement of the Ichnology of New England. 96 pp. Wright & Porter, Boston.
  • Hunt, R.J. 2001. Biodiversity and Palaeoecological Significance of Tertiary Fossil Floras from King George Island, West Antarctica. 339 pp. PhD Thesis, University of Leeds, Leeds.
  • Hunt, R.J. and Poole, I. 2003. Revising Palaeogene West Antarctic climate and vegetation history in light of new data from King George Island. In: S.L. Wing, P.D. Gingerich, B. Schmitz, and E. Thomas (eds.), Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369: 395–412.
  • Keighley, D.G. and Pickerill, R.K. 1998. Systematic ichnology of the Mabou and Cumberland groups (Carboniferous) of western Cape Breton Island, Eastern Canada: 2. Surface markings. Atlantic Geology 34: 83–112.
  • Knaust, D. 2015. Siphonichnidae (new ichnofamily) attributed to the burrowing activity of bivalves: Ichnotaxonomy, behaviour and palaeoenvironmental implications. Earth-Science Reviews 150: 497–519.
  • Lima, J.H.D., Minter, N.J., and Netto, R.G. 2017. Insights from functional morphology and neoichnology for determining tracemakers: a case study of the reconstruction of an ancient glacial arthropod-dominated fauna. Lethaia 50: 576–590.
  • Lima, J.H.D., Netto, R.G., Corrêa, C.G., and Lavina, E.L.C. 2015. Ichnology of deglaciation deposits from the Upper Carboniferous Rio do Sul Formation (Itararé Group, Paraná Basin) at central-east Santa Catarina State (southern Brazil). Journal of South American Earth Sciences 63: 137–148.
  • Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Tomus 1. 824 pp. Laurentii Salvii, Holmiae.
  • MacEachern, J.A., Bann, K.L., Gingras, M.K., Zonneveld, J.-P., Dashtgard, S.E., and Pemberton, S.G. 2012. The ichnofacies paradigm. In: D. Knaust and R.G. Bromley (eds.), Trace fossils as indicators of sedimentary environment. Developments in Sedimentology 64: 103–138.
  • Mansilla, H., Stinnesbeck, W., Varela, N., and Leppe, M. 2013. Eocene fossil feather from King George Island, South Shetland Islands, Antarctica. Antarctic Science 26: 384–388.
  • Minter, N.J., Braddy, S.J., and Davies, R.B. 2007. Between a rock and a hard place: arthropod trackways and ichnotaxonomy. Lethaia 40: 365–375.
  • Mozer, A. 2013. Eocene sedimentary facies in volcanogenic succession on King George Island, South Shetland Islands: a record of pre-ice sheet terrestrial environments in West Antarctica. Geological Quarterly 57: 385–394.
  • Nawrocki, J., Pańczyk, M., and Williams, I. 2011. Isotopic ages of selected magmatic rocks from King George Island (West Antarctica) controlled by magnetostratigraphy. Geological Quarterly 55: 323–334.
  • Netto, R.G., Benner, J.S., Buatois, L.A., Uchman, A., Mángano, G., Riddge, J.C., Kazakauskas, V., and Gaigalas, A. 2012. Glacial environments. In: R.G. Bromley and D. Knaust (eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology 64: 299–327.
  • Owen, R. 1852. Description of the impressions and footprints of the Protichnites from the Potsdam sandstone of Canada. Quarterly Journal of the Geological Society of London 8: 214–225.
  • Pańczyk, M. 2013. Geochronology of the volcanic rocks from the central and south part of the King George Island (South Shetland Islands, West Antarctica). Przegląd Geologiczny 61: 117–119.
  • Pollard, J.E. and Walker, E.F. 1984. Reassessment of sediments and trace fossils from Old Red Sandstone (Lower Devonian) of Dunure, Scotland, described by John Smith (1909). Geobios 17: 567–576.
  • Rindsberg, A.K. 2012. Ichnotaxonomy: finding patterns in a welter of information. In: D. Knaust and R.G. Bromley (eds.), trace fossils as indicators of sedimentary environments. Developments in Sedimentology 64: 45–78.
  • Schwarzbach, M. 1938. Tierfährten aus eiszeitlichen Bändertonen. Zeitschrift für Geschiebeforschung und Flachlandsgeologie 14: 143–152.
  • Shen, Y. 1994. Subdivision and correlation of Cretaceous to Paleogene volcano-sedimentary sequence from Fildes Peninsula, King George Island, Antarctica. In: Y. Shen (ed.), Stratigraphy and palaeontology of Fildes Peninsula, King George Island, Antarctica. State Antarctic Committee, Science Press, Monograph 3: 1–36.
  • Smellie, J.L., Pankhurst, R.J. Thomson, M.R.A., and Davies R.E.S. 1984. The geology of the South Shetland Islands: VI. Stratigraphy, Geochemistry and Evolution. British Antarctic Survey Scientific Reports 87: 1–85.
  • Smith, J. 1909. Upland Fauna of the Old Red Sandstone Formation of Carrick, Ayrshire. 60 pp. Cross, Kilwinning.
  • Trewin, N.H. 1994. A draft system for the identification and description of arthropod trackways. Palaeontology 37: 811–823.
  • Uchman, A. and Pervesler, P. 2006. Surface lebensspuren produced by amphipods and isopods (crustaceans) from the Isonzo Delta tidal flat, Italy. Palaios 21: 384–390.
  • Uchman, A., Kazakauskas, V., and Gaigalas, A. 2009. Trace fossils from Late Pleistocene lacustrine varve sediments in eastern Lithuania. Palaeogeography, Palaeoclimatology, Palaeoecology 272: 199–211.
  • Uchman, A., Hu, B., Wang, Y., and Song, H. 2011. The trace fossil Diplopodichnus from the Lower Jurassic lacustrine sediments of central China and the isopod Armadillidium vulgare (pillbug) lebensspuren as its recent analogue. Ichnos 17: 147–155.
  • Verde, M., Corona, A., Cabrera, F., Montenegro, F., Batista, A., Perea, D., Morosi, E., Toriño, P., and Manzuetti, A. 2017. Mermia to Scoyenia-shorebird ichnofacies in lacustrine deposits from the Eocene of Antarctica. In: E.M. Bordy (ed.), 2nd International Conference of Continental Ichnology, Nuy Valley, West Cape, South Africa, 1st–4th October 2017, Abstract Book, 91–92. University of Cape Town, Cape Town.
  • Walker, E.F. 1985. Arthropod ichnofauna of the Old Red Sandstone at Dunure and Montrose, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences 76: 287–297.
  • Walter, H. 1985. Zur Ichnologie des Pleistozäns von Liebegast. Freiberger Forschungshefte C400: 101–116.
  • Walter, H. and Suhr, P. 1998. Lebensspuren aus kalzeitlichen Bändersedimenten des Quartärs. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 43/44: 311–328.
  • Wisshak, M. 2017. Taming an ichnotaxonomical Pandora’s box: revision of dendritic and rosetted microborings (ichnofamily: Dendrinidae). European Journal of Taxonomy 390: 1–99.
  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.
  • Zastawniak, E., Wrona, R., Gaździcki, A., and Birkenmajer, K. 1985. Plant remains from the top part of the Point Hennequin Group (Upper Oligocene), King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica 81: 143–164.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7250d4ae-d1b6-4eba-96b0-b4641774f7e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.