PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 05 |

Tytuł artykułu

Identification of critical stage responding to consecutive monoculture obstacle in Rehmannia glutinosa L.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Rehmannia glutinosa L. (R. glutinosa) is one of the most common traditional Chinese medicines, whose productivity and quality, however, are seriously impacted by replanting disease, also known as consecutive monoculture obstacle. Little is known about R. glutinosa’s critical responsive stage to consecutive monoculture. There were two parts to this study: first, we analyzed different gene expression profiles in root of R. glutinosa between first-year planting (FP) and second-year replanting (SP) in five development stages (stage I to V) using Illumina sequencing to interpret the stage that most dramatically responding to consecutive monoculture; second, applying tissue culture technique, the harm of consecutive monoculture in a sterile condition was simulated and the medium was added with the soil extracts from FP and SP soil. The results showed that a significant difference in gene expression appeared at stage I under consecutive monoculture. Using a calcium indicator, the fluo-3 fluorescence to detect calcium distribution in the root tip of seedlings cultured in medium, the results revealed that after being cultured for 10 days, the SP fluorescence intensity of the seedlings was significantly higher than that of FP while crown position was particularly prominent. The evidence from gene expression profiling and tissue culture reached agreement that early stage of R. glutinosa growth was the critical stage to perceive consecutive monoculture stress. The results are of great significance to study the molecular mechanism of consecutive monoculture, which is expected to await a quick and accurate evaluation of land feasibility to plant R. glutinosa.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

05

Opis fizyczny

Article 59 [11p.], fig.,ref.

Twórcy

autor
  • College of Life Sciences, Henan Agricultural University, Zhengzhou, China
autor
  • College of Life Sciences, Henan Agricultural University, Zhengzhou, China
autor
  • College of Life Sciences, Henan Agricultural University, Zhengzhou, China
autor
  • College of Life Sciences, Henan Agricultural University, Zhengzhou, China
autor
  • College of Life Sciences, Henan Agricultural University, Zhengzhou, China
autor
  • College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
autor
  • College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
autor
  • College of Life Sciences, Henan Agricultural University, Zhengzhou, China

Bibliografia

  • An M, Pratley JE, Haig T (2000) Phytotoxicity of vulpia residues: IV. Dynamics of allelochemicals during decomposition of vulpia residues and their corresponding phytotoxicity. J Chem Ecol 26:2603–2617. https://doi.org/10.1023/A:1005692724885
  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995. https://doi.org/10.1101/gr.7.10.986
  • Bacskai BJ, Xia MQ, Strickland DK, Rebeck GW, Hyman BT (2000) The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc Natl Acad Sci 97:11551–11556. https://doi.org/10.1073/pnas.200238297
  • Barbero F, Guglielmotto M, Capuzzo A, Maffei ME (2016) Extracellular self-DNA (esDNA), but not heterologous plant or insect DNA (etDNA), induces plasma membrane depolarization and calcium signaling in lima bean (Phaseolus lunatus) and maize (Zea mays). Int J Mol Sci 17:1. https://doi.org/10.3390/ijms17101659
  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta Gen Subj 1820:1283–1293. https://doi.org/10.1016/j.bbagen.2011.10.012
  • Bouhaouel I, Gfeller A, Fauconnier ML, Rezgui S, Amara HS, Jardin PD (2015) Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. Biocontrol 60:425–436. https://doi.org/10.1007/s10526-014-9634-3
  • Bu RF, Xie JM, Yu JH, Liao WB, Xiao XM, Lv J, Wang CL, Ye J, Calderón-Urrea A (2016) Autotoxicity in cucumber (Cucumis sativus L.) seedlings is alleviated by silicon through an increase in the activity of antioxidant enzymes and by mitigating lipid peroxidation. J Plant Biol 59:247–259. https://doi.org/10.1007/s12374-016-0526-1
  • Cartenì F, Bonanomi G, Giannino F, Incerti G, Vincenot CE, Chiusano ML, Mazzoleni S (2016) Self-DNA inhibitory effects: underlying mechanisms and ecological implications. Plant Signal Behav 11:e1158381. https://doi.org/10.1080/15592324.2016
  • Cholewa E, Peterson CA (2004) Evidence for symplastic involvement in the radial movement of calcium in onion roots. Plant Physiol 134:1793–1802. https://doi.org/10.1104/pp.103.035287
  • Cholewa E, Bown AW, Cholewinski AJ, Shelp BJ, Snedden WA (1997) Cold-shock-stimulated γ-aminobutyric acid synthesis is mediated by an increase in cytosolic Ca²⁺, not by an increase in cytosolic H⁺. Can J Bot 75:375–382. https://doi.org/10.1139/b97-040
  • Dias AS, Lidon FC, Ramalho JC (2009) I. Heat stress in Triticum: kinetics of Ca and Mg accumulation. Braz J Plant Physiol 21:123–134. https://doi.org/10.1590/S1677-04202009000200005
  • Du JF, Yin WJ, Zhang ZY, Hou J, Huang J, Li J (2009) Autotoxicity and phenolic acids content in soils with different planting interval years of Rehmannia glutinosa. Chin J Ecol 28:445–450
  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115. https://doi.org/10.1146/annurev.energy.30.050504.144212
  • Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4:415–420. https://doi.org/10.1016/S1369-5266(00)00194-1
  • Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Mol Plant 3:653–669. https://doi.org/10.1093/mp/ssq019
  • Guo GY, Li MJ, Wang PF, Wang FQ, He HQ, Li J, Zheng HY, Chen XJ, Zhang ZY (2013) Abnormal change of calcium signal system on consecutive monoculture problem of Rehmannia glutinosa. China J Chin Materia Med 38:1471–1478
  • Han LM, Wang SQ, Ju HY, Yan X, Yan F, Yang ZM (2000) Identification and allelopathy on the decomposition products from soybean stubs. Acta Ecol Sin 20:771–778
  • Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93:2054–2059. https://doi.org/10.1016/j.biochi.2011.05.019
  • He CN, Gao WW, Yang JX, Bi W, Zhang XS, Zhao YJ (2009) Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318:63–72. https://doi.org/10.1007/s11104-008-9817-8
  • Hegazy AK, Mansour KS, Abdel-Hady NF (1990) Allelopathic and autotoxic effects of Anastatica hierochuntica L. J Chem Ecol 16:2183–2193. https://doi.org/10.1007/BF01026929
  • Hegde RS, Miller DA (1992) Concentration dependency and stage of crop growth in alfalfa autotoxicity. Agron J 84:940–946. https://doi.org/10.2134/agronj1992.00021962008400060006x
  • Huang XX, Bie ZL, Huang Y (2010) Identification of autotoxins in rhizosphere soils under the continuous cropping of cowpea. Allelopathy J 25:383–392
  • Irani NG, Russinova E (2009) Receptor endocytosis and signaling in plants. Curr Opin Plant Biol 12:653–659. https://doi.org/10.1016/j.pbi.2009.09.011
  • Kitazawa H, Asao T, Ban T, Pramanik MHR, Hosoki T (2005) Autotoxicity of root exudates from strawberry in hydroponic culture. J Hortic Sci Biotechnol 80:677–680. https://doi.org/10.1080/14620316.2005.11511997
  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608. https://doi.org/10.1093/jxb/err460
  • Li ZF, Yang YQ, Xie DF, Zhu LF, Zhang ZG, Lin WX (2012) Identification of autotoxic compounds in fibrous roots of Rehmannia (Rehmannia glutinosa Libosch.). PLOS One 7:e28806. https://doi.org/10.1371/journal.pone.0028806
  • Li MJ, Yang YH, Li XY, Gu L, Wang FJ, Feng FJ, Tian YH, Wang FQ, Wang XR, Lin WX, Chen XJ, Zhang ZY (2015) Analysis of integrated multiple ‘omics’ datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa. J Exp Bot 66:5837–5851. https://doi.org/10.1093/jxb/erv288
  • Li GJ, Kronzucker HJ, Shi WM (2016a) Root developmental adaptation to Fe toxicity: mechanisms and management. Plant Signal Behav 11:e1117722. https://doi.org/10.1080/15592324.2015.1117722
  • Li ZF, He CL, Wang Y, Li MJ, Dai YJ, Wang T, Lin WX (2016b) Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch. Sci Rep 6:33962. https://doi.org/10.1038/srep33962
  • Liu TJ, Cheng ZH, Meng HW, Ahmad I, Zhao HL (2014) Growth, yield and quality of spring tomato and physicochemical properties of medium in a tomato/garlic intercropping system under plastic tunnel organic medium cultivation. Sci Hortic 170:159–168. https://doi.org/10.1016/j.scienta.2014.02.039
  • Mazzoleni S, Bonanomi G, Incerti G, Chiusano ML, Termolino P, Mingo A, Senatore M, Giannino F, Cartenì F, Rietkerk M, Lanzotti V (2015) Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks? New Phytol 205:1195–1210. https://doi.org/10.1111/nph.13121
  • Platta HW, Stenmark H (2011) Endocytosis and signaling. Curr Opin Cell Biol 23:393–403. https://doi.org/10.1016/j.ceb.2011.03.008
  • Purvis JE, Lahav G (2013) Encoding and decoding cellular information through signaling dynamics. Cell 152:945–956. https://doi.org/10.1016/j.cell.2013.02.005
  • Ren X, Yan ZQ, He XF, Li XZ, Qin B (2017) Allelochemicals from rhizosphere soils of Glycyrrhiza uralensis Fisch: discovery of the autotoxic compounds of a traditional herbal medicine. Ind Crops Prod 97:302–307. https://doi.org/10.1016/j.indcrop.2016.12.035
  • Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Fiore PPD (2012) Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 92:273–366. https://doi.org/10.1152/physrev.00005.2011
  • Singh HP, Batish DR, Kohli RK (1999) Autotoxicity: concept, organisms, and ecological significance. Crit Rev Plant Sci 18:757–772. https://doi.org/10.1080/07352689991309478
  • Wu LK, Wang HB, Zhang ZX, Lin R, Zhang ZY, Lin WX (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa—monocultured rhizosphere soil. PLoS One 6:e20611. https://doi.org/10.1371/journal.pone.0020611
  • Wu B, Long QL, Gao Y, Wang Z, Shao TW, Liu YN, Li Y, Ding WL (2015a) Comprehensive characterization of a time-course transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq. BMC Genom 16:1010. https://doi.org/10.1186/s12864-015-2151-7
  • Wu LK, Wang JY, Huang WM, Wu HM, Chen J, Yang YQ, Zhang ZY, Lin WX (2015b) Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture. Sci Rep 5:15871. https://doi.org/10.1038/srep15871
  • Wu LK, Wu HM, Chen J, Wang JY, Lin WX (2016) Microbial community structure and its temporal changes in Rehmannia glutinosa rhizospheric soils monocultured for different years. Eur J Soil Biol 72:1–5. https://doi.org/10.1016/j.ejsobi.2015.12.002
  • Yang YH, Chen XJ, Chen JY, Xu HX, Li J, Zhang ZY (2011) Differential miRNA expression in Rehmannia glutinosa plants subjected to continuous cropping. BMC Plant Biol 11:53. https://doi.org/10.1186/1471-2229-11-53
  • Yang YH, Zhang ZY, Fan HM, Zhao YD, Li MJ, Li J, Chen JY, Lin WX, Chen XJ (2013) Construction and analysis of different expression cDNA libraries in Rehmannia glutinosa plants subjected to continuous cropping. Acta Physiol Plant 35:645–655. https://doi.org/10.1007/s11738-012-1105-9
  • Yang M, Zhang XD, Xu YG, Mei XY, Jiang BB, Liao JJ, Yin ZB, Zheng JF, Zhao Z, Fan LM, He XH, Zhu YY, Zhu SS (2015a) Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng. PLoS One 10:e0118555. https://doi.org/10.1371/journal.pone.0118555
  • Yang YH, Li MJ, Li XY, Chen XJ, Lin WX, Zhang ZY (2015b) Transcriptome-wide identification of the genes responding to replanting disease in Rehmannia glutinosa L. roots. Mol Biol Rep 42:881–892. https://doi.org/10.1007/s11033-014-3825-y
  • Yin WJ, Du JF, Li J, Zhang ZY (2009) Effects of continuous cropping obstacle on growth of Rehmannia glutinosa. China J Chin Materia Med 34:18–21 (in Chinese)
  • Yu JQ, Sun Y, Zhang Y, Ding J, Xia XJ, Xiao CL, Shi K, Zhou YH (2009) Selective trans-Cinnamic acid uptake impairs [Ca²⁺]cyt homeostasis and growth in Cucumis sativus L. J Chem Ecol 35:1471–1477. https://doi.org/10.1007/s10886-009-9726-1
  • Zhang RX, Li MX, Jia ZP (2008) Rehmannia glutinosa: review of botany, chemistry and pharmacology. J Ethnopharmacol 117:199–214. https://doi.org/10.1016/j.jep.2008.02.018
  • Zhang B, Li XZ, Wang FQ, Li MJ, Zhang JY, Gu L, Zhang LJ, Tu WQ, Zhang ZY (2016) Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its ‘autotoxic circle’. Plant Soil 407:307–322. https://doi.org/10.1007/s11104-016-2885-2

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5b87ccc1-e279-4dc4-8f84-050f4f4e5bff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.