Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  submerged vegetation
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Submerged aquatic vegetation (SAV) is often difficult to restore due to their low seedling survival rates. Therefore, we hypothesized that the elodeid macrophytes serve as effective “nursery” areas to promote success for seedlings of other SAV. However, the high density of the elodeid community may inhibit the establishment of other SAV. An experiment was conducted to explore this “nursery effect” as a restoration approach to increase the success of seed restoration. Two elodeid species were pre-planted into mesocosms to create three levels of “nursery beds” i.e., bare, sparse (approx. 100 g m⁻²) and dense (approx. 200 g m⁻²). Seeds of Vallisneria spiralis were then placed into these beds to test the seed germination and growth of V. spiralis seedlings. After three months, seed germination was lower in the bare treatment than in the sparse and dense treatments. The growth of V. spiralis seedlings was greater in the sparse treatment than in the bare and dense treatments. These results revealed that the established elodeid bed had a positive effect on the seed restoration of V. spiralis but that the restoration efficiency was significantly reduced by the high-density cover of the elodeid community.
The European Water Framework Directive (WFD) requires all inland and coastal waters to reach “good ecological status” by 2015. The good ecological status of shallow lakes can be characterised by clear water dominated by submerged vegetation. The ecological response of shallow lakes on nutrients largely depends on morphological and hydrological features, such as water depth, retention time, water level fl uctuations, bottom type, fetch etc. These features determine the “critical nutrient load” of a lake. When the actual nutrient load of a lake is higher than the critical nutrient load, the ecological quality of this lake will deteriorate, resulting in a turbid state dominated by algae. Climate change might lead to changes in both environmental factors and ecosystem response. This certainly will have an effect on the ecological status. As an illustration the results of a multidiscipline study of a shallow peaty lake (Loenderveen) are presented, including hydrology, geochemistry and ecology. Ground- and surface water fl ows, nutrient dynamics and ecosystem functioning have been studied culminating in an application of the ecological model of the lake (PCLake). Future scenarios were implemented through changing precipitation, evaporation and temperature. Climate change will lead to higher nutrient loads and lower critical nutrient loads. As a consequence lakes shift easier from clear water to a turbid state.
The role that invasive Vallisneria spiralis L. plays in determining the species richness of the rotifer community was examined in the littoral zone of two heated (by power stations) lakes near Konin (W. Poland) (Lake Licheńskie – area 153.6 ha, max. depth 13.3 m and Lake Ślesińskie – area 148.1 ha, max. depth 25.7 m). Vallisneria spiralis is a thermophilic and vegetative reproducing species which has been recorded in the lakes since the 1990s. It spreads very quickly in the lakes, forming monospecific, dense beds which, force out all other submerged vegetation. Samples were collected in August 2004 on 8 littoral stations of Lake Licheńskie and Ślesińskie. Five-liter samples of water (plankton species) and macrophytes (epiphytic species) were elaborated separately. An analysis of the taxonomic structure of rotifer communities inhabiting single-species Vallisneria beds and mixed-species (Vallisneria plus other macrophyte species) beds showed that both communities were relatively rich in species and similar in terms of species composition. A total of 100 species of Monogononta were identified. Single-species Vallisneria beds were inhabited by 77 species, whereas 82 species were found at stations with mixed vegetation. Species diversity was relatively high in both types of macrophyte assemblages. Numbers of rotifer species inhabiting the single-species Vallisneria beds are among the average values observed in a littoral zone rich in macrophyte species from lakes of different morphometry and trophic state. The above observations confirm part of the conclusions from literature that invasions by new plant species do not always lead to a decline in the habitat value for native animals. Otherwise, the invaded plant creates the habitat easily colonized by the native plankton and epiphytic invertebrates.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.