Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 96

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 5 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  protein expression
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 5 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Galectin-1 is a soluble carbohydrate-binding protein with a particularly high expression in skeletal muscle. Galectin-1 has been implicated in skeletal muscle development and in adult muscle regeneration, but also in the degeneration of neuronal processes and/or in peripheral nerve regeneration. Exogenously supplied oxidized galectin-1, which lacks carbohydrate-binding properties, has been shown to promote neurite outgrowth after sciatic nerve sectioning. In this study, we compared the expression of galectin-1 mRNA and immunoreactivity in innervated and denervated mouse and rat hind-limb and hemidiaphragm muscles. The results show that galectin-1 mRNA expression and immunoreactivity are up-regulated following denervation. The galectin-1 mRNA is expressed in the extrasynaptic and perisynaptic regions of the muscle, and its immunoreactivity can be detected in both regions by Western blot analysis. The results are compatible with a role for galectin-1 in facilitating reinnervation of denervated skeletal muscle.
Protein kinase B (PKB/Akt) is a serine-threonine kinase functioning downstream of phosphatidylinositol 3-kinase (PI-3 kinase) in response to mitogen or growth factor stimulation. In several cell types, it plays an important anti-apoptotic role. TPA is a potent regulator of the growth of many different cell types. Here, we detected that TPA could induce cell apoptosis in the gastric cancer cell line, BGC-823. We also found that TPA inhibited the expression of PKB/Akt in a TPA concentration- and time-dependent manner. Furthermore, TPA inhibited the phosphorylation of PKB at Ser473, but did not affect the phosphorylation of Thr308. It only attenuated the expression of PKB/Akt and the phosphorylation of Ser473 in the cell nucleus, whereas it did not change the PKB/Akt distribution in BGC-823 cells. These results suggest that PKB/Akt inhibition by TPA may be the important factor in the mechanism of effect of TPA on gastric cell lines.
Peroxisome proliferator-activated receptors (PPAR`s) serve as lipid sensors and when activated modify gene expression of proteins highly involved in the regulation of fatty acid metabolism. Recently, the accumulation of lipids in liver was shown to be depended on the excessive protein-mediated transmembrane transport of long chain fatty acids (LCFAs). The aim of the present study was to determine the in vivo effects of PPAR and activation at two levels: 1) on the expression of fatty acid transporters, 2) on the content and fatty acids saturation status of lipids in rats liver. PPAR agonist (WY 14,643) treatment upregulated the liver expression of FAT/CD36 (+20%, p<0.05) and did not significantly affect the content of FABPpm and FATP-1. Accordingly there was a significant increase in the content of phospholipid (+12%, p<0.05), diacylglycerol (+65%, p<0.05) and triacylglycerol (+46%, p<0.05) fractions followed PPAR activation. In contrast, pioglitazone (PPAR agonist) had no effect on the content of fatty acid transporters (FAT/CD36, FABPpm and FATP-1) as well as the content of liver lipid fractions with the exception for triacylglycerols, which have been reduced significantly (-89%, p<0.05). These findings suggest that in vivo PPAR and PPAR activation exert different effects on both the expression of fatty acid transporters and lipid content in rat’s liver.
The expression of matrix metalloproteinase of the first type was studied in frontal sections of the adult rat brain one month after a single intracerebroventricular injection of P-amyloid peptide (25-35), which is known to be a well-known model of the development of Alzheimer's disease. Brain sections were stained immunocytochemically to detect MMP-1 expression, and histologically to reveal the state of hippocampal neurons. Administration of P-amyloid peptide induced a significant degeneration of cells in the dorsal hippocampus. This was demonstrated by a significant decrease in the total number of cells and by the appearance of acidophilic neurons of altered (often triangular) shape. Altered cells were most often found in the hippocampal field CA3, and in a smaller quantity in the CA1 field. MMP-1-like immunoreactivity was found in the same hippocampal areas, the staining being restricted to the cells of altered shape (staining of somata and primary neurites). The data suggest possible involvement of the type 1 metalloproteinase in the development of Alzheimer's disease.
This study focused on the function of hnRNP-R in the regulation of c-fos expression. We demonstrated that hnRNP-R accelerated the rise and decline phases of c-fos mRNAs and Fos proteins, allowing PMA to induce an augmented pulse response of c-fos expression. Then, we examined the role of the c-fos-derived AU-rich element (ARE) in hnRNP-R-regulated mRNA degradation. Studies with the ARE-GFP reporter gene showed that hnRNP-R significantly reduced the expression of GFP with an inserted ARE. Moreover, immunoprecipitation-RT-PCR analysis demonstrated that in R28 cells and rat retinal tissues, the c-fos mRNA was co-immunoprecipitated with hnRNP-R. These findings indicate that hnRNP-R regulates the c-fos expression in retinal cells, and that the ARE of c-fos mRNAs contributes to this regulation.
13
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

DLC3 expression in hepatocellular carcinoma

75%
Introduction and objective. Deleted in Liver Cancer (DLC) proteins belong to the family of RhoGAPs and thus are believed to operate as negative regulators of the Rho family of small GTPases. Rho proteins are considered to be significant links between numerous cellular pathways. So far, DLC1 – the first identified member from Deleted in Liver Cancer family – has been established as a tumour suppressor in hepatocellular carcinoma. As shown by many studies, DLC1 expression is reduced by gene loss or epigenetic silencing in this type of cancer. The expression and function of its close family relative DLC3 is less known. The presented study determined the expression and cellular localization of DLC3 protein in hepatocellular carcinoma tissue. Materials and methods. The protein level in two types of hepatocellular carcinoma: typical and fibrolamellar, were assessed by the immunohistochemical approach. Results. DLC3 immunoreactivity was found to be present in the cytoplasm of normal hepatocytes. In hepatocellular carcinoma sections, DLC3 was detected primarily in the cytoplasm of cancer cells, although in a small percentage of cancer cells cell nuclei were also positively stained. Morphometric analysis followed by statistical evaluation showed that the DLC3 immunoreactivity in the tumour sections was comparable to the one observed in non-cancerous liver specimens. Conclusions. The results obtained indicate that DLC3 protein, contrary to DLC1, is commonly expressed in hepatocellular carcinoma. It appears that members of the DLC family, although structurally highly related, may function differently during HCC development.
We examined the expression of brain nitric oxide synthase (bNOS) in two developing rat brain structures, the striatum and the cerebral cortex. For this purpose, we quantified the relative protein concentration level using the Western blotting method and densitometric scanning. 32 Wistar rats, divided according to survival period (P0-P120-postnatal days) were used in this study. Our results demonstrate that bNOS expression rises in these structures during the first week of postnatal life, reaching a maximum in the striatum on the 10th day and in the cerebral cortex on the 7th day of postnatal life. After the period of increase the expression declines and after the 14th day a stabilisation of bone protein concentration is observed, both in the striatum and the cerebral cortex. These changes in bone protein expression might be related to the important role of nitric oxide in the developing rat brain, especially in synaptogenesis, apoptosis and neurotransmission.
Regulator of G-protein signalling (RGS)2 proteins critically regulate signalling cascades initiated by G-protein coupled receptors (GPCRs) by accelerating the deactivation of heterotrimeric G-proteins. Lysophosphatidic acid (LPA) is the predominant growth factor that drives the progression of ovarian cancer by activating specific GPCRs and G-proteins expressed in ovarian cancer cells. We have recently reported that RGS proteins endogenously expressed in SKOV-3 ovarian cancer cells dramatically attenuate LPA stimulated cell signalling. The goal of this study was twofold: first, to identify candidate RGS proteins expressed in SKOV-3 cells that may account for the reported negative regulation of G-protein signalling, and second, to determine if these RGS protein transcripts are differentially expressed among commonly utilized ovarian cancer cell lines and non-cancerous ovarian cell lines. Reverse transcriptase-PCR was performed to determine transcript expression of 22 major RGS subtypes in RNA isolated from SKOV-3, OVCAR-3 and Caov-3 ovarian cancer cell lines and non-cancerous immortalized ovarian surface epithelial (IOSE) cells. Fifteen RGS transcripts were detected in SKOV-3 cell lines. To compare the relative expression levels in these cell lines, quantitative real time RT-PCR was performed on select transcripts. RGS19/GAIP was expressed at similar levels in all four cell lines, while RGS2 transcript was detected at levels slightly lower in ovarian cancer cells as compared to IOSE cells. RGS4 and RGS6 transcripts were expressed at dramatically different levels in ovarian cancer cell lines as compared to IOSE cells. RGS4 transcript was detected in IOSE at levels several thousand fold higher than its expression level in ovarian cancer cells lines, while RGS6 transcript was expressed fivefold higher in SKOV-3 cells as compared to IOSE cells, and over a thousand fold higher in OVCAR-3 and Caov-3 cells as compared to IOSE cells. Functional studies of RGS 2, 6, and 19/GAIP were performed by measuring their effects on LPA stimulated production of inositol phosphates. In COS-7 cells expressing individual exogenous LPA receptors, RGS2 and RSG19/GAIP attenuated signalling initiated by LPA1, LPA2, or LPA3, while RGS6 only inhibited signalling initiated by LPA2 receptors. In SKOV-3 ovarian cancer cells, RGS2 but not RGS6 or RGS19/GAIP, inhibited LPA stimulated inositol phosphate production. In contrast, in CAOV-3 cells RGS19/GAIP strongly attenuated LPA signalling. Thus, multiple RGS proteins are expressed at significantly different levels in cells derived from cancerous and normal ovarian cells and at least two candidate RGS transcripts have been identified to account for the reported regulation of LPA signalling pathways in ovarian cancer cells.
The developmental changes of 25-kDa synaptosomal-associated protein (SNAP-25) expression in the rat striatum and cerebral cortex were examined using Western-blotting and densitometric scanning of immunoblots. Analysis of the striatum extracts from postnatal day 0 (P0) to postnatal day 120 (P120) demonstrated that SNAP-25 is poorly expressed until P14. From this point the expression level gradually increases to reach a maximum on P60 and then decreases. The pattern of SNAP-25 expression in the rat cerebral cortex is different. Two peaks are observed, the first on P10 and the second on P60, after which the expression level decreases. These results appear to confirm the role of SNAP-25 protein in axon outgrowth and synaptogenesis in the nervous system.
Two members of the nuclear receptor superfamily, EcR and UltTaspiracle (Usp) heterodimerize to form a functional receptor for 20-hydroxyecdysone — the key ecdysteroid controlling induction and modulation of morphogenetic events through Drosophila development. In order to study aspects of receptor function and ultimately the structural basis of the ecdysteroid receptor-DNA interaction, it is necessary to produce large quantities of purified EcR and Usp DNA-binding domains. Toward this end, we have expressed the EcR DNA-binding domain and the Usp DNA-binding domain as proteins with an affinity tag consisting of six histidine residues (6xHis-EcRDBD and 6xHis-UspDBD, respectively) using the expression vector pQE-30. Under optimal conditions, elaborated in this study, bacteria can express the recombinant 6xHis-EcRDBD to the levels of 11% of total soluble proteins and the 6xHis-UspDBD to the levels of 16%. Both proteins were purified to homogeneity from the soluble protein fraction using combination of ammonium sulphate fractionation and affinity chromatography on Ni-NTA agarose. The gel mobility shift experiments demonstrated that the purified 6xHis-EcRDBD and the 6xHis-UspDBD interact specifically with an 20-hydroxyecdysone response element from the promoter region of the hsp 27 Drosophila gene.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 5 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.