Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 50

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  phylogenetic relationship
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Giardia duodenalis is an ubiquitous flagellate that infects humans and many species of animals. This species exhibits great biotypic and genetic diversity. In the present study, we established short- and long-term in vitro cultures of G. duodenalis trophozoites originating from red deer and Thomson’s gazelle (artiodactyls) and genetically characterised the isolates by their glutamate dehydrogenase and triose phosphate isomerase gene sequences. The G. duodenalis isolates from red deer and the gazelle represented assemblages A (AIII sub-assemblage) and B. In conclusion, G. duodenalis assemblages and sub-assemblages can be associated with differences in growth rate in vitro cultures.
The genetic diversity of two Aconitum species endemic to the Carpathian Mountains and Sudetes was studied. A reticulate evolution between them was earlier postulated as an effect of secondary contact. The genetic diversity at the individual and taxonomic levels was examined across the entire geographical ranges of the taxa in 11 populations based on 247 AFLP markers found in 112 individuals in the Sudetes and Western Carpathians. The overall genetic differentiation was greater within the Sudetic A. plicatum (Fst = 0.139, P < 0.001) than within the Carpathian A. firmum (Fst = 0.062, P < 0.001), presumably due to the long-lasting geographic isolation between the Giant Mts and Praděd (Sudetes) populations of the species. Interestingly, relatively distant and presently isolated populations of A. plicatum and A. f. subsp. maninense share a part of their genomes. It could be an effect of their common evolutionary history, including past and present reticulations. The introgression among infraspecific taxa of Aconitum is common, probably as a result of seed dispersal within a distance of ca. 20 km (Mantel's r = 0.36, P = 0.01). Aconitum f. subsp. maninense had the highest genetic diversity indices: Nei's h and rarefied FAr, and divergence index DW (P < 0.05), pointing to its presumably ancient age and long-term isolation.
The paper deals with phylogenetic relationships of recently described Montenegrospeum bogici Pešić et Glöer, 2012 from central Bosnia. The female reproductive system was found to bear two receptacula seminis. Mitochondrial cytochrome oxidase subunit I and nuclear 18S rRNA gene partial sequences were used for the maximum likelihood phylogenetic inference. Morphological and molecular data are congruent: Montenegrospeum does not belong to the Moitessieriidae, and is phylogenetically remote from Bythiospeum; it belongs to the Hydrobiidae, subfamily Sadlerianinae, and its sister taxon is Dalmatinella Radoman, 1973 (bootstrap support 87%).
In order to infer phylogenetic relationships within the extraordinarily speciesrich order Coleoptera, a cladistic analysis is performed, in which 516 adult and larval morphological characters are scored for 359 beetle taxa, representing 314 families or subfamilies plus seven outgroup taxa representing seven holometabolan orders. Many morphological features are discussed at length with accompanying illustrations, and an attempt is made to homologize these and employ a uniform set of terms throughout the order. The resulting data matrix is analyzed using the parsimony ratchet in conjunction with implied weighting. The resulting most parsimonious tree found the order Strepsiptera to be sister to Coleoptera, each of the four coleopteran suborders to be monophyletic and subordinal relationships as follows: (Archostemata Adephaga) (Myxophaga Polyphaga), but without significant support for either clade. The topology of the remainder of the tree is consistent with many prior molecular and morphological analyses, with the monophyly of superfamilies Hydrophiloidea (sensu lato), Scarabaeoidea and Curculionoidea and many currently recognized families and subfamilies are well supported, with weaker support for Elateroidea, Cucujiformia and Phytophaga.
DNA-based identification of species for phylogenetic analysis as well as forensic identification is widely being carried out with the help of polymerase chain reaction (PCR). In this study, a successful effort has been made to identify 5 species of Indian freshwater turtles, including 3 hard-shell turtles (Geoemydidae), i.e. Kachuga dhongoka, K. kachuga and Geoclemys hamiltoni, and 2 species of soft-shell turtles (Trionychidae), i.e. Aspideretes gangeticus and Lissemys punctata punctata, by using a well-optimized PCR-RFLP method. The analysis of nucleotide sequence variations in the PCR-amplified mitochondrial cyt-b genes (encoding cytochrome b) from the 5 species revealed its usefulness in the taxonomic differentiation of these species. On the basis of cyt-b sequence data and the PCR-RFLP pattern, a phylogeny was developed to resolve the genetic relationships between these species, living in the same habitat type. In comparison, the PCR-RFLP of mitochondrial 16S rDNA genes appeared less decisive in analysing phylogenetic relationships or even in species differentiation. Further, the molecular method (PCR-RFLP) developed here is simple, rapid, reliable and reproducible; hence it can be routinely applied for species identification, essential for conservation and management of endangered chelonian species.
The phylogenetic relationships of the Paleocene crocodylian Akanthosuchus langstoni are assessed using published data matrices and morphological data from the holotype and referred specimens. Cladistic analyses indicate that Akanthosuchus is unequivocally nested within Alligatoroidea. Weak support from a majority rule consensus tree indicates that Akanthosuchus may be more closely allied with alligatorines than with caimanines, but in the strict consensus tree these relationships remain ambiguous. There is no evidence from phylogenetic analyses to support the hypothesis that Akanthosuchus represents the postcrania of the Paleocene crocodylians Navajosuchus or Ceratosuchus. Growth marks observed in histological sections of osteoderms of the holotype of Akanthosuchus langstoni indicate that it was at least eight years old at the time of death. Although the individual may not have been fully mature at the time of death, lineage dwarfism cannot be ruled out as a possible reason for its relatively small size.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.