Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  neuronal plasticity
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Recent advances in application of molecular biology to studies on learning and memory formation suggest that understanding of these seemingly elusive phenomena may be within our reach. This mini-review summarizes the present knowledge on activation and possible functions of transcription factors in learning processes with a focus on studies performed in the author's laboratory.
Kainate is a glutamate analog that produces neuronal excitation resulting in seizures within hours following its intraperitoneal injection into adult rats. Then, at 2-3 days after the treatment, neurodegeneration of apoptotic character can be observed in limbic system. As a consequence, plastic reorganization and glial reactivation phenomena occur. These physiological and pathological responses are reflected by specific changes in gene expression, that can be dissected according to their spatio-temporal patterns. The early phase of gene expression observed in all hippocampal subfields appears to reflect a sudden burst of spiking activity. Changes in mRNA levels restricted to dentate gyrus are suggestive of a link to neuronal plasticity. The late gene expression response implies its correlation either to neuronal cell death or glial reactivation, depending on cellular localization of gene products. Thus analysis of the temporal and spatial gene expression pattern in the hippocampus after kainate treatment may provide clues revealing specific phenomena to which gene expression could be attributed.
B-50/GAP-43 is a growth-associated phosphoprotein enriched in growth cones and in the presynaptic terminal. The expression of the protein is restricted to the nervous system and is highest in the first week after birth. In adult brain, B-50 is enriched in areas with high plasticity. The regulation of expression of the B-50 gene occurs both at the transcriptional and post-transcriptional level by unknown mechanisms. The gene contains 2 regions displaying promoter activity, the most 3' of which (P2) is the active one in vivo. Expression of B-50 in non-neuronal cells results in filopodial extensions whereas antibodies or antisense oligo's to B-50 prevent neurite outgrowth. The protein is important for neuronal pathfinding. Several post-translational modifications have been described, ADP-ribosylation and palmitoylation in the membrane binding domain, phosphorylation by PKC, casein kinase II and phosphorylase kinase, and dephosphorylation by several phosphatases, among which is calcineurin. Interactions of B-50 have been described with calmodulin, PIP kinase, F-actin, and phospholipids. Recent studies indicate that the phosphorylation state and amount of calmodulin bound to B-50 regulate the rate of transmitter release. Induction of long-term potentiation by high frequency stimulation of hippocampal slices results in an increased state of B-50 phosphorylation. This will increase the amount of free calmodulin in the presynaptic terminal and increase the amount of transmitter released. Although B-50 is involved in seemingly unrelated forms of neuronal plasticity, neurite outgrowth and transmitter release, our unifying hypothesis is that the protein plays an (unknown) essential, modulatory role in membrane expansion.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.