Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 49

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  mesenchymal stem cell
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.
Mesenchymal stem cells (MSCs) constitute an interesting cellular source to promote brain regeneration after Parkinson’s disease. MSCs have significant advantages over other stem cell types, and greater potential for immediate clinical application. The aim of this study was to investigate whether MSCs from the human placenta could be induced to differentiate into dopaminergic cells. MSCs from the human placenta were isolated by digestion and density gradient fractionation, and their cell surface glycoproteins were analyzed by flow cytometry. These MSCs were cultured under conditions promoting differetiation into adipocytes and osteoblasts. Using a cocktail that includes basic fibroblast growth factor (bFGF), all trans retinoic acid (RA), ascorbic acid (AA) and 3-isobutyl-1-methylxanthine (IBMX), the MSCs were induced in vitro to become dopamine (DA) neurons. Then, the expression of the mRNA for the Nestin and tyrosine hydroxylase (TH) genes was assayed via RT-PCR. The expression of the Nestin, dopamine transporter (DAT), neuronal nuclear protein (NeuN) and TH proteins was determined via immunofluorescence. The synthesized and secreted DA was determined via ELISA. We found that MSCs from the human placenta exhibited a fibroblastoid morphology. Flow cytometric analyses showed that the MSCs were positive for CD44 and CD29, and negative for CD34, CD45, CD106 and HLA-DR. Moreover, they could be induced into adipocytes and osteocytes. When the MSCs were induced with bFGF, RA, AA and IBMX, they showed a change in morphology to that of neuronal-like cells. The induced cells expressed Nestin and TH mRNA, and the Nestin, DAT, NeuN and TH proteins, and synthesized and secreted DA. Our results suggest that MSCs from the human placenta have the ability to differentiate into dopaminergic cells.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.