Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 20

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  kinase
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of this study was to investigate the influence of standardized Epilobium angustifolium L. extract [100 mg/kg/day, p.o.] on the expression level of 5α-reductase type 2 (Srd5ar2) mRNA and Mapk3 mRNA a representative of non-genomic xenobiotics signaling pathway. It was shown that plant extract from the E. angustifolium showed a slight tendency to reduce prostate weight in hormonally induced animals (p>0.05) and in testosterone induced animals receiving both, extract and finasteride (p<0.05). Finasteride in rats induced by testosterone caused a smaller decrease in the level of mRNA 5α-steroid reductase 2 (SRd5ar2), than in rats treated with the hormone and studied plant extracts. In general, an increase in the amount of MAPK3 mRNAs in testosterone-induced groups of rats receiving tested plant extract with or without finasteride was observed, while the expression of type 2 5α-steroid reductase decreased (p<0.05). Further experimental studies should be performed in order to understand the molecular basis of interactions, the efficacy and safety of tested plant extracts.
The elongation factor 2 (eEF-2) protein kinase was isolated from rat liver cells, purified and partly characterized. It was found that the enzyme exists in an inactive form in the homogenate of rat liver. The active fraction of kinase eEF-2 was obtained after removal of the inhibitory substance by hydroxyapatite column chromatography. The purified enzyme is an electTophoretically homogeneous protein with relative molecular mass of approximately 90000 and isoelectric point, pi = 5.9. The enzyme specifically phosphorylates the elongation factor eEF-2 in the presence of calmodulin and Ca2+.
Parasites are designed by evolution to invade the host and survive in its organism until they are ready to reproduce. Parasites release a variety of molecules that help them to penetrate the defensive barriers and avoid the immune attack of the host. In this respect, particularly interesting are enzymes and their inhibitors secreted by the parasites. Serine-, aspartic-, cysteine-, and metalloproteinases are involved in tissue invasion and extracellular protein digestion. Helminths secrete inhibitors of these enzymes (serpins, aspins, and cystatins) to inhibit proteinases, both of the host and their own. Proteinases and their inhibitors, as well as helminth homologues of cytokines and molecules containing phosphorylcholine, influence the immune response of the host biasing it towards the anti-inflammatory Th2 type. Nucleotide-metabolizing enzymes and cholinesterase are secreted by worms to reduce inflammation and expel the parasites from the gastrointestinal tract. An intracellular metazoan parasite, Trichinella spiralis, secretes, among others, protein kinases and phosphatases, endonucleases, and DNA-binding proteins, which are all thought to interfere with the host cellular signals for muscle cell differentiation. Secretion of antioxidant enzymes is believed to protect the parasite from reactive oxygen species which arise from the infection-stimulated host phagocytes. Aside from superoxide dismutase, catalase (rarely found in helminths), and glutathione peroxidase (selenium-independent, thus having a poor activity with H2O2), peroxiredoxins are probably the major H2O2-detoxifying enzymes in helminths. Secretion of antioxidant enzymes is stage-specific and there are examples of regulation of their expression by the concentration of reactive oxygen species surrounding the parasite. The majority of parasite-secreted molecules are commonly found in free-living organisms, thus parasites have only adapted them to use in their way of life.
Autocrine growth factors produced by epithelial cells mediate the development and proliferation of neoplastic human prostate tissue. Various approaches have been used to down-regulate neoplastic growth of prostate cancer using natural flavonoids, soluble receptors, pseudo-ligands, monoclonal antibodies and tyrosine kinase inhibitors (tyrphostins). Selected growth factor/growth factor receptor loops (mainly TGFα/EGFR and IGFs/IGFIR) have been proposed as regulators of prostate cancer cell growth. We have previously determined that blockade of IGFIR or VEGF2R signaling pathways by tyrphostin AG1024 and SU1498 inhibits autocrine growth and viability of DU145 cells in vitro. Recently, we compared the activity of AG1024 and SU1498 with the inhibiting effect of tyrphostin A23 (a selective inhibitor of EGFR). The results described in this paper confirm that DU145 cells do not produce IGFI or EGF. In contrast, DU145 cells produce a great amount of VEGF, much more than TGFα (about 60-fold), and VEGF may be the real autocrine growth factor of the investigated cells. The results indicate that the growth of DU145 may be regulated by at least three autocrine loops: TGFα/EGFR, IGFII/IGFIR and VEGF/VEGFR2. Neither AG1024 nor SU1498 affected the production of TGFα substantially, which excludes the possibility that IGFRs or VEGFR2 inhibitors arrest the growth of these cells by inhibition of synthesis and/or secretion of TGFα. The obtained data indicate that all tree investigated tyrphostins (AG1024, SU1498 and A23) inhibit signal transmission by Akt (PKB), ERK(1/2), Src and STAT in a similar manner. A comparison of the effects of the investigated tyrphostins indicates that TGFα, IGFII and VEGF stimulate cell growth by affecting the same signaling pathway. The hypothesis was confirmed by the effect of the investigated tyrphostins on activation of EGFR. All these inhibitors decreased phosphorylation of EGFR to the same extent, and after the same time of incubation with cell culture. These results strongly suggest that stimulation of EGFR kinase is the main step in the initiation of mitogen signaling in DU145 cells, regardless of the type of ligand (TGFα, IGFs or VEGF) and their specific receptors.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.