Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  freezing tolerance
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The purpose of the present study was to determine whether water deficit affects cold hardiness of rhododendron ‘Catawbiense Boursault’, ‘Lee’s Dark Purple’, ‘Prinz Karneval’ and ‘Old Port’ shrubs. Plants were grown in unheated greenhouse and for 14 weeks from June to mid-September were subjected to six irrigation treatments. In the end of September shrubs were left in an unheated greenhouse or planted into the ground and at the beginning of each month from December to March freezing tolerance tests were performed. The results showed that in all rhododendron cultivars the highest cold hardiness was noted in January and February, lower in March but the lowest in December. Application of four-week water deficit period during summer especially between the first and the second vegetative growth may improve the frost resistance of Rhododendron shrubs.
Dehydrins (DHNs) are part of a large group of highly hydrophilic proteins known as LEA (Late Embryogenesis Abundant). They were originally identified as group II of the LEA proteins. The distinctive feature of all DHNs is a conserved, lysine-rich 15-amino acid domain, EKKGIMDKIKEKLPG, named the K-segment. It is usually present near the C-terminus. Other typical dehydrin features are: a track of Ser residues (the S-segment); a consensus motif, T/VDEYGNP (the Y-segment), located near the N-terminus; and less conserved regions, usually rich in polar amino acids (the Phi-segments). They do not display a well-defined secondary structure. The number and order of the Y-, S-and K-segments define different DHN sub-classes: Y(n)SK(n), Y(n)Kn, SK(n), K(n) and K(n)S. Dehydrins are distributed in a wide range of organisms including the higher plants, algae, yeast and cyanobacteria. They accumulate late in embryogenesis, and in nearly all the vegetative tissues during normal growth conditions and in response to stress leading to cellular dehydration (e.g. drought, low temperature and salinity). DHNs are localized in different cell compartments, such as the cytosol, nucleus, mitochondria, vacuole, and the vicinity of the plasma membrane; however, they are primarily localized to the cytoplasm and nucleus. The precise function of dehydrins has not been established yet, but in vitro experiments revealed that some DHNs (YSK(n)-type) bind to lipid vesicles that contain acidic phospholipids, and others (K(n)S) were shown to bind metals and have the ability to scavenge hydroxyl radicals [Asghar, R. et al. Protoplasma 177 (1994) 87-94], protect lipid membranes against peroxidation or display cryoprotective activity towards freezing-sensitive enzymes. The SK(n)-and K-type seem to be directly involved in cold acclimation processes. The main question arising from the in vitro findings is whether each DHN structural type could possess a specific function and tissue distribution. Much recent in vitro data clearly indicates that dehydrins belonging to different subclasses exhibit distinct functions.
Winterhardiness is a composite of tolerances to freezing, desiccation, ice-encasement, flooding and diseases. From one point of view, winterhardiness may not be easily manipulated by genetic engineering technology because many different genes are involved in the tolerance of these diverse stresses. However, these various stresses have similarities. They promote formation of activated forms of oxygen, promote membrane lipid and protein degradation, cause similar biophysical changes in membrane structure, and culminate with increased leakage of cytoplasmic solutes and loss of cellular membrane functions. These similarities led to the hypothesis that winter injury might be reduced in crop plants if their tolerance of oxidative stress was increased. Towards that objective we created transgenic alfalfa (Medicago sativa L.) plants that overexpress either Mn-SOD or Fe-SOD cDNA (provided by Dirk Inzé, Universiteit Gent). Petiole explants were transformed using Agrobacterium tumefaciens and plants were regenerated by somatic embryogenesis. The primary transgenic plants were screened using PCR (polymerase chain reaction), Southern hybridization and native PAGE for SOD activity. Greenhouse and laboratory studies showed a minimal difference in stress tolerance between the primary transgenic and non-transgenic plants. In the first field trial, four primary transgenic plants expressing two forms of the Mn-SOD cDNA had greater survival after two winters than the non-transgenic RA3. Similar results were obtained in a second field trial, comparing 18 independent transformants with Mn-SOD targeted to the mitochondria, 11 independent transformants with Mn-SOD targeted to the chloroplast and 39 independent transformants with Fe-SOD targeted to the chloroplast, expressed in three different non-transgenic plants. The transgenic plants averaged over 25% higher survival than the non-transgenic controls after one winter. There was no effect of subcellular targeting or SOD type on field survival, but there was variation among independent transformants containing the same SOD construct. Activated oxygen therefore appears to be one of the possible causes of winter injury, and it should be possible to reduce winter injury in transgenic plants by constitutive overexpression of SOD.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.