Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  drying condition
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The oil bearing rose (Rosa damascena) is the most important rose species in terms of fragrances and flavourings. Due to the very short blooming period and excessive amount of flowers, considerable amount of the rose flowers wait for a long time until distillation. There are losses of essential oil yield and quality use of before waited petals. The cold storage and drying applications may be alternative method for evaluate of excessive amount of flowers. Therefore in this study it was aimed to determine the effects of storage on cold (4°C) and room condition (25°C) and convective drying with different temperatures (40, 50 and 60°C) in terms of changes in volatile compositions of oil rose flowers based on direct hexane extraction. Totally 20 volatile compounds were identified in fresh, stored and dried rose petals. The detected compounds varied according to the various storage and drying conditions. It was determined that phenylethyl alcohol, citronellol, geranyl acetate, nonadecane were predominant compounds on all treatments. In the study, storing treatments led to increase on the percentage of oxygenated monoterpenes (OM) while drying treatments led to decrease on OM. It was determined that storing and drying treatments led to increase on the percentage of benzenoid compounds (BC) and aliphatic hydrocarbons (AH).
Background. Problems in substantial under recovery of Pseudomonas aeruginosa and Candida albicans from carriers have been demonstrated for laboratories performing phase 2, step 2 efficacy tests on disinfectants relative to levels required by the EN 13697 standard. It was thus necessary to determine recoveries of these microorganisms following procedural losses incurred during drying and to optimise drying conditions such that recoveries then complied with the standard. Objectives. The aim of the study was to establish optimal drying conditions for the recovery of Candida albicans ATCC 10231 from carriers. Materials and Methods. The evaluation was performed according to the EN 13697:2001 standard procedure. A test suspension of Candida albicans and interfering substance were inoculated onto the surface of carriers (2 cm diameter stainless steel discs) and then dried under different conditions consisting of: a 37°C incubation with and without an incubator fan as well as at 23°C (room temperature) in a laminar air flow cabinet. Carriers were dried until the surfaces appeared visibly dry and the number of surviving organisms then recovered from the surface were quantified. The following were calculated for colony forming units (cfu); N (log10 cfu in a 0.05 ml test suspension), NC (the control log10 cfu in neutralizing medium), Nts (cfu numbers remaining on the surface) and the N-NC difference which should not exceed 2 log10 when microorganism recoveries are adequate and without any toxicity effects of the neutralising medium. Experiments was conducted using validating procedure (NC) which is performed with distilled water. Results. Drying at 37°C adversely affected the survival of Candida albicans and prevented the levels of microbial recovery from carriers to reach those specified by the EN 13697 standard. However, drying at around room temperatures of 23°C reduced Candida albicans mortality and increased recoveries from the carrier to levels compliant with the standard, where the N-NC differences were not greater than 2 log10. Conclusions. The viability of Candida albicans ATCC 10231 is sufficiently improved when carriers are dried at 23°C, even if the drying time exceeds 60 minutes. The density of the initial test suspension (N) should also be increased.
Zaprezentowano wyniki doświadczeń mających na celu określenie wpływu temperatury wlotowej i wylotowej powietrza na przebieg suszenia rozpyłowego i stopień inaktywacji α-amylazy w czasie procesu. Względna aktywność enzymu suszonego w stosunku do enzymu płynnego była wyższa po zastosowaniu wyższej temperatury suszenia i zwiększeniu szybkości odparowania. Wzrost temperatury powietrza powodował skrócenie czasu suszenia, zmniejszenie zawartości wody w suszu oraz zwiększenie strat ciepła w czasie procesu.
W pracy zbadano, jak wpływają różne metody suszenia, ich parametry oraz przechowywanie na zdolność fermentacyjną drożdży Saccharomyces cerevisiae. Miarą wykorzystaną do oznaczenia aktywności świeżych drożdży oraz suszy bezpośrednio po suszeniu była ilość CO2 uwolnionego w trakcie pomiaru zdolności fermentacyjnej. Suszono następującymi metodami: fluidyzacyjnie, konwekcyjnie w suszarce tunelowej, liofilizacyjnie i rozpyłowo. W wyniku procesu suszenia oraz w trakcie przechowywania aktywność biologiczna drożdży ulega zmniejszeniu. Najmniejszą degradację zanotowano po dwuetapowym konwekcyjnym suszeniu w temperaturze 40 i 60°C w suszarce tunelowej. Średnie wyniki aktywności zanotowano dla sublimacji przy –40 i –30°C, a także po fl uidyzacji w 40 i 60°C. Liofilizacja przy zamrażaniu materiału w temperaturze –70 i –20°C, suszenie fl uidyzacyjne w 80°C oraz suszenie rozpyłowe spowodowały największą degradację materiału.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.