Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 36

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  drought tolerance
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Different responses among legume species were observed, but the morphological and physiological differences that confer drought resistance or susceptibility are not well explained. The objective of this study was the determination of variation of morphological characteristics within 7 field bean and 4 field pea cultivars as related to drought tolerance. Also differences in the effect of drought on seed germination and seedling growth in 2 field bean and 2 field pea cultivars of different drought tolerances were investigated. The examined cultivars were characterized by variation of certain morphological characteristics regarded as xeromorphic features associated with the ability of plant to survive under drought. The drought resistant cultivars (field bean Gobo and field pea Solara) in comparison with the sensitive ones (field bean Victor and field pea Bareness) were characterized by more favourable relations between the size of the above—ground parts and the size of root, as well as the frequency and size of stomata. Moreover, in the resistant cultivars there was observed, a smaller influence of simulated drought (ψ=−0.6 MPa) on the increase of dry matter of the above-ground parts and of the roots. Also there was smaller influence on the height of seedlings and on the length of lateral roots. The correlation coefficients between the measured characteristics and the values of the drought susceptibility index (DSI) were in most cases statistically not significant, although, on the whole, they were very high. This may be an indication of a relatively high participation of the measured characteristics in the total variation of the drought tolerance in the cultivars. In cultivars regarded as belonging to the group of sensitive ones, a more disadvantageous effect of simulated drought (ψ=−0.6 MPa) on seed germination was observed, especially in the determination of the promptness index (PI).
Fourteen F₅- and F₆-pedigrees, previously selected for a more vigorous seminal root system in a cross population of spring barley, were compared with their parents in the response to severe post-sowing drought and limited N- and P-supply. The materials were studied in glass-faced soil boxes, sand-vermiculite cultures and in the field. The F₅'s juvenile rooting superiority was not totally preserved for further growth stages suggesting partly different genetic backgrounds responsible for the seminal root system at various growth stages. Results indicated an absence of close genetic correlations between the seminal and adventitious root systems. The selected spring barley pedigrees exhibiting a more vigorous rooting benefit much more for their ability to avoid drought conditions than for their tolerance to nitrogen and phosphorus limitations. Especially under decreased N availability, the enhanced root extension in F₅ₛ resulted in a depressed shoot dry matter production. Despite a relatively low differentiation in the grain yield, some of the selected F₆-pedigrees were simultaneously found to indicate a high yield potential, an improved stability or tolerance to low-input.
Relatively little research has been conducted to determine different responses to drought among cultivars of the legume species. The objective of this study was to identify differences in seedlings growth, water relations and leaf conductances resulting from drought imposed on two field bean and two field pea cultivars that had been observed to differ in their drought tolerances, and special emphasis was placed on the root system development. Distinct differences between resistant and sensitive cultivars of field bean and field pea became evident in measurements of the characteristics of the lateral root. The drought treatment induced statistically significant decrease in the number of the developed laterals, their total length and dry matter. In the drought resistant cultivars (field bean Gobo and field pea Solara) this reduction was smaller in comparison with sensitive ones (field bean Victor and field pea Bareness). The effect of drought on growth of tap root in the drought resistant and drought sensitive cultivars was smaller and statistically not significant. The results showed that drought resistant cultivars when compared with drought sensitive one would demonstrate less abundance in the above-ground part and greater dimensions of the root system. The measurements of leaf water potential and stomata diffusive resistance measurements indicate that the physiological reasons for the different reactions to drought between the resistant and the sensitive field bean and field pea cultivars may be due to a more effective protection of the level of tissue hydration and due to increase stomata diffusive resistance in the resistant cultivars. During recovery period it has been also demonstrated that in the drought resistant cultivars a tendency exists for a more complete return to the level of the control plants.
Festuca arundinacea (Fa) is one of the most drought-tolerant species within the Lolium-Festuca complex. In the current work the protein level of chloroplastic Cu-Zn SOD (superoxide dismutase) in two Fa plants with extreme values of drought tolerance during exposition to water deficit was investigated. The obtain results revealed higher level of enzyme accumulation in more drought-tolerant Fa genotype. In less-drought tolerant plant the increase of dismutase level during stress treatment was only slight.
Leguminous species, Piptadenia moniliformes (Benth.) and Trischidium molle (Benth.) H. E. Ireland, both prevalent in the Caatinga vegetation, were submitted to varying watering regimes under greenhouse conditions. In experiment I, 60-day-old P. moniliformes plants were maintained under suspended irrigation for 12 days. Assessment on day 12 of drought revealed that leaf relative water content decreased to 40% and stomatal conductance and transpiration were also strongly diminished. Apparent electron transport rate (ETR) and photochemical quenching (qP) values were reduced by water deficit treatment compared to controls, while non-photochemical quenching (NPQ) increased; however, the basal values were recovered in moisturized plants when analyzed after 48 h of rewatering. In experiment II, T. molle plants were watered once (1 ×), 3 (3 ×) or 5 times (5 ×) per week, up to day 65 after emergence. Chlorophyll a, chlorophyll b and carotenoid contents were reduced in the 3 × and 5 × watering treatments. Photosystem II maximum efficiency (Fv'/Fm'), ETR and qP values strongly decreased when drainage frequency and NPQ values were increased. Observation verified that chlorophyll fluorescence is a suitable tool for evaluating the developmental characteristics of the arboreal leguminous species studied. Analysis of the data obtained suggest that plant tolerance to the dry climate conditions of the Caatinga ecosystem is directly associated with fast physiological adaptation to water deficit, by accumulating biomass in the root system in detriment to the shoots. The data presented contribute to further understanding the developmental and physiological mechanisms that enable plant adaptation to dry climates and, particularly, to the unique dry environmental conditions of the Caatinga region.
Pulses are an important dietary constituent in human and animal diets. As well as being a source of income and livestock feed, pulses satisfy 33% of the dietary protein nitrogen (N) needs of humans. Pulses are often exposed to environmental stresses (biotic and abiotic) that decrease their productivity throughout the world. Abiotic stresses (drought, salt, temperature, UV, nutrient deficiency) alone are responsible for more than 50% yield reductions of some major crops. The following examination of drought stress types (no irrigation, early period stress, late period stress, control) of 10 chickpea genotypes from Turkey was carried out for two years (2010 and 2011) in a field experiment set up accoding to a randomized complete block design with three replications and conducted under the ecological conditions prevalent in Konya, Turkey. The investigated nutrition-related parameters were the seed concentrations of protein, fat, ash, fiber, moisture, non-nitrogenous pith substances and minerals. Means achieved under the particular stress types showed that the protein percentage ranged from 19.71% to 19.80%, fat – 4.640 to 4.690%, ash – 2.810 to 2.860%, fiber – 7.360 to 7.400%, moisture – 9.150 to 9.180%, non-nitrogenous pith substances – 56.16 to 56.25%, while the mineral content (mg kg-1) corresponded to the following ranges: 9.700 to 9.980 B, 68.32 to 79.44 for Fe, 8866.3 to 8912.4 for K, 1383.1 to 1410.3 for Mg, 21.99 to 23.85 Mn, 3148.0 to 3192.6 P, 1815.6 to 1835.4 for S and from 25.81 to 28.43 for Zn. In general, the content of protein, magnesium and sulfur showed the lowest values under no irrigation conditions, while the content of ash, non-nitrogenous pith substances, boron, potassium, phosphorus and zinc showed the highest values under no irrigation conditions. Additionally, the nutritional value of chickpea seeds showed significant differences for all of the investigated characteristics viewed in terms of triple interactions (year x stress factor x genotype). The present research results can be useful for farmers, plant breeders, food companies etc., interested in chickpea. Finally, responses of the genotypes to different levels of drought stress were modified by the investigated quality characteristics.
In order to evaluate morphological and physiological traits related to drought tolerance and to determine the best criteria for screening and identification of drought-tolerant genotypes, we grew two tolerant genotypes (MCC392, MCC877) and two sensitive genotypes (MCC68, MCC448) of chickpea under drought stress (25% field capacity) and control (100% field capacity) conditions and assessed the effect of drought stress on growth, water relations, photosynthesis, chlorophyll fluorescence and chlorophyll content in the seedling, early flowering and podding stages. Drought stress significantly decreased shoot dry weight, CO2 assimilation rate (A), transpiration rate (E), and PSII photochemical efficiency (Fv/Fm) in all genotypes. In the seedling and podding stages, PSII photochemical efficiency was higher in tolerant genotypes than in sensitive genotypes under drought stress. Water use efficiency (WUE) and CO2 assimilation rate were also higher in tolerant than in sensitive genotypes in all investigated stages under drought stress. Our results indicated that water use efficiency, A and Fv/Fm can be useful markers in studies of tolerance to drought stress and in screening adapted cultivars of chickpea under drought stress.
Seedlings of sorghum varieties (M35-1, a drought tolerant species; SPV-839, a drought sensitive one) differing in their drought tolerance were subjected to 150 mM NaCl stress for a short duration of time (up to 72 h). Both the varieties failed to exhibit efficient ion exclusion mechanism like that of salt tolerant species, but in turn resulted in higher accumuiation of Na+ and Cl- ions over a period of 72 h salt stress. In addition, accumulation of calcium, potassium and proline in seedlings of sorghum varieties was moderate to short-term NaCl stress. The modulation of antioxidant components significantly diverged between the two varieties during seed germination, further the efficiency of antioxidant scavenging system is maintained during short-term NaCl treatments. In compari son to tolerant variety, the sensitive variety depicted higher SOD activity under control and salinity treatments but specific activity of catalase was significantly reduced. In contrast, drought tolerant variety exhibited efficient hydrogen peroxide scavenging mechanisms with higher catalase and GST activities under control and salt stress conditions, but not in the sensitive one. In conclusion, our comparative studies indicate that drought tolerant and susceptible varieties of sorghum induce efficient differential oxidative components of enzymatic machinery for scavenging ROS thereby alleviating the oxidative stress generated by salt stress during seedling growth.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.