Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 73

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  calcium ion
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of the study was to analyze the distribution of calcium ions in the pig pineal gland at the level of electron microscopy. The investigations were performed on the pineals obtained immediately after slaughter (performed between 11:30 and 12:00 a.m.) from 4-month-old gilts. The fixation procedures were conducted with the use of pyroantimonate, which reacted with calcium ions and formed electron dense precipitates. The precipitates were found both in the intercellular spaces and in cells - pinealocytes, gial cells, endothelial cells and fibroblasts. The precipitates were much more numerous in the intercellular spaces than in the cells. Amount and distribution of precipitates differed significantly between pinealocytes, therefore two types of cells were distinguished. The first type of pinealocytes included cells containing a small or moderate amount of precipitates. They were usually characterized by light or dark cytoplasm and large variability in number and structure of dense bodies. Pinealocytes classified to the second type possessed large or very large content of precipitates. These cells were characterized by electron dense cytoplasm and showed the presence of numerous dense bodies. In both types of pinealocytes, precipitates were present in the nucleus and in the cytoplasm. In nuclei, precipitates were numerous in nucleoplasma and rather infrequently noted between membranes of the nuclear envelope. In the cytoplasm deposits were found in mitochondria, vesicles and cisterns of smooth endoplasmic reticulum, in the Golgi apparatus and in cytosol. The amount of precipitates in glial cells, endothelial cells and fibrocytes was lower than in pinealocytes.
The cellular automaton method was used to simulate the process of ion desorption from the surface of lipid membranes modified with a mixture of cationic and anionic amphiphile molecules. Three models were devised to analyze the influence of anionic long-chain and cationic long-chain compounds, and a mixture of anionic short chain and cationic long chain compounds on bipositive ion desorption. The obtained results are compared with experimental results. These models show the significance of some hypotheses on the role of temporal complexes of the alkylsulphonate anion and calcium ion, of readsorption of calcium ions, and of different methods of molecular aggregation on the kinetics of calcium desorption.
S. obliquus cultures were subjected to various heavy metals (Cd, Co, Ni and Mn) in the presence or absence of calcium. Ca2+ increased the cell number (unicells or coenobia). Amounts of cell wall polysaccharides and soluble sugars were increased by the heavy metals used and decreased when Ca2+ was added, this perhaps being due to or resulting from inhibited cell division which did not allow the wall components to decrease by being distributed among daughter cells.
20
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Biochemistry of magnesium

72%
Magnesium is essential for biochemical functions of cells. Since Mg2+ has a relatively low ionic radius in proportion to the size of the nucleus (0.86 versus 1.14 f A for Ca2+), it shows exceptional biochemical activity. Due to its physicochemical properties, intracellular magnesium can bind to the nucleus, ribosomes, cell membranes or macromolecules occurring in the cell’s cytosol. It is indispensable for the nucleus to function as a whole and for the maintenance of physical stability as well as aggregation of rybosomes into polysomes able to initiate protein synthesis. Mg2+ can also act as a cofactor for ribonucleic acid enzymes (ribozymes) capable of specifically recognizing and cleaving the target mRNA. As an essential cofactor in NER, BER, MMR processes, Mg2+ is required for the removal of DNA damage. An activator of over 300 different enzymes, magnesium participates in many metabolic processes, such as glycolysis, Krebs cycle, β-oxidation or ion transport across cell membranes. Mg2+ plays a key role in the regulation of functions of mitochondria, including the control of their volume, composition of ions and ATP production.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.